Skip to main content
Log in

Bacterial Inactivation by Ultrasonic Waves: Role of Ionic Strength, Humic Acid, and Temperature

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The effects of ultrasonic wave irradiation on bacterial inactivation were investigated as functions of the ionic strength (IS), humic acid, and temperature. Escherichia coli (E. coli) D21g was selected as a model bacterium to better catch the effect of three parameters on the cell inactivation behavior. The Suwannee River humic acid (SRHA) was chosen as a representative humic acid, and the concentration for ultrasonic tests was kept to 10 ppm. The frequency of ultrasonic wave employed was 20 kHz, and the inactivation efficiency at two exposure times (5 and 10 min) was compared. The removal efficiency of E. coli D21g was confirmed to be 100 % at 10 min in all conditions except the 10-min temperature-controlled condition. The removal efficiency with the high IS was greater than that with the low IS, by 26 %, confirming an increase in the bacterial inactivation level with increasing IS. The bacterial removal efficiency with SRHA (96.6 %) was much greater than that without SRHA (69.6 %). The removal efficiency in the temperature-controlled condition (at a relatively low temperature) was significantly lower than that in the uncontrolled condition. Furthermore, the trend obtained using two other types of bacteria with more complex surface structure was consistent with that using the E. coli D21g cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Al Bsoul, A., Magnin, J. P., Commenges-Bernole, N., Gondrexon, N., Willison, J., & Petrier, C. (2010). Effectiveness of ultrasound for the destruction of Mycobacterium sp strain (6PY1). Ultrasonics Sonochemistry, 17(1), 106–110.

    Article  CAS  Google Scholar 

  • Al-Juboori, R. A., & Yusaf, T. (2012). Identifying the Optimum Process Parameters for Ultrasonic Cellular Disruption of E. Coli. Int. J. Chem. React. Eng., 10.

  • Antoniadis, A., Poulios, I., Nikolakaki, E., & Mantzavinos, D. (2007). Sonochemical disinfection of municipal wastewater. Journal of Hazardous Materials, 146(3), 492–495.

    Article  CAS  Google Scholar 

  • Burleson, G. R., Murray, T. M., & Pollard, M. (1975). Inactivation of viruses and bacteria by ozone, with and without sonication. Applied Microbiology, 29(3), 340–344.

    CAS  Google Scholar 

  • Cameron, M., McMaster, L. D., & Britz, T. J. (2008). Electron microscopic analysis of dairy microbes inactivated by ultrasound. Ultrasonics Sonochemistry, 15(6), 960–964.

    Article  CAS  Google Scholar 

  • Char, C. D., Mitilinaki, E., Guerrero, S. N., & Alzamora, S. M. (2010). Use of high-intensity ultrasound and UV-C light to inactivate some microorganisms in fruit juices. Food Bioprocess Technology, 3(6), 797–803.

    Article  Google Scholar 

  • Chong, M. N., Jin, B., Chow, C. W. K., & Saint, C. (2010). Recent developments in photocatalytic water treatment technology: a review. Water Research, 44(10), 2997–3027.

    Article  CAS  Google Scholar 

  • D'amico, D. J., Silk, T. M., Wu, J. R., & Guo, M. R. (2006). Inactivation of microorganisms in milk and apple cider treated with ultrasound, J. J Food Prot, 69(3), 556–563.

    Google Scholar 

  • Daughton, C. G. (2001). Emerging pollutants, and communicating the science of environmental chemistry and mass spectrometry: pharmaceuticals in the environment. Journal of American Society for Mass Spectrometry, 12(10), 1067–1076.

    Article  CAS  Google Scholar 

  • Deborde, M., & von Gunten, U. (2008). Reactions of chlorine with inorganic and organic compounds during water treatment - Kinetics and mechanisms: a critical review. Water Research, 42(1–2), 13–51.

    Article  CAS  Google Scholar 

  • Drakopoulou, S., Terzakis, S., Fountoulakis, M. S., Mantzavinos, D., & Manios, T. (2009). Ultrasound-induced inactivation of gram-negative and gram-positive bacteria in secondary treated municipal wastewater. Ultrasonics Sonochemistry, 16(5), 629–634.

    Article  CAS  Google Scholar 

  • Furuta, M., Yamaguchi, M., Tsukamoto, T., Yim, B., Stavarache, C. E., Hasiba, K., & Maeda, Y. (2004). Inactivation of Escherichia coli by ultrasonic irradiation. Ultrasonics Sonochemistry, 11(2), 57–60.

    Article  CAS  Google Scholar 

  • Gao, S., Hemar, Y., Ashokkumar, M., Paturel, S., & Lewis, G. D. (2014). Inactivation of bacteria and yeast using high-frequency ultrasound treatment. Water Research, 60, 93–104.

    Article  CAS  Google Scholar 

  • Gogate, P. R. (2007). Application of cavitational reactors for water disinfection: current status and path forward. Journal of Environmental Management, 85(4), 801–815.

    Article  CAS  Google Scholar 

  • Han, Y., Kim, D., Hwang, G., Lee, B., Eom, I., Kim, P. J., Tong, M. P., & Kim, H. (2014). Aggregation and dissolution of ZnO nanoparticles synthesized by different methods: Influence of ionic strength and humic acid. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 451, 7–15.

    Article  CAS  Google Scholar 

  • Haznedaroglu, B. Z., Kim, H. N., Bradford, S. A., & Walker, S. L. (2009). Relative transport behavior of Escherichia coli O157:H7 and Salmonella enterica serovar pullorum in packed bed column systems: influence of solution chemistry and cell concentration. Environmental Science and Technology, 43(6), 1838–1844.

    Article  CAS  Google Scholar 

  • Hua, I., & Thompson, J. E. (2000). Inactivation of Escherichia coli by sonication at discrete ultrasonic frequencies. Water Research, 34(15), 3888–3893.

    Article  CAS  Google Scholar 

  • Jiang, X., Tong, M., & Kim, H. (2012). Influence of natural organic matter on the transport and deposition of zinc oxide nanoparticles in saturated media. Journal of Colloid and Interface Science, 386, 34–43.

    Article  CAS  Google Scholar 

  • Joyce, E., Phull, S. S., Lorimer, J. P., & Mason, T. J. (2003). The development and evaluation of ultrasound for the treatment of bacterial suspensions. A study of frequency, power and sonication time on cultured Bacillus species. Ultrasonics Sonochemistry, 10(6), 315–318.

    Article  CAS  Google Scholar 

  • Joyce, E., Al-Hashimi, A., & Mason, T. J. (2011). Assessing the effect of different ultrasonic frequencies on bacterial viability using flow cytometry. Journal of Applied Microbiology, 110(4), 862–870.

    Article  CAS  Google Scholar 

  • Jyoti, K. K., & Pandit, A. B. (2001). Water disinfection by acoustic and hydrodynamic cavitation. Biochemical Engineering Journal, 7(3), 201–212.

    Article  CAS  Google Scholar 

  • Kim, H. N., & Walker, S. L. (2009). Escherichia coli transport in porous media: Influence of cell strain, solution chemistry, and temperature. Colloids and Surfaces B: Biointerfaces, 71(1), 160–167.

    Article  CAS  Google Scholar 

  • Kim, E. S., Lee, D. H., Yum, B. W., & Chang, H. W. (2005). The effect of ionic strength and hardness of water on the non-ionic surfactant-enhanced remediation of perchloroethylene contamination. Journal of Hazardous Materials, 119(1–3), 195–203.

    Article  CAS  Google Scholar 

  • Kim, H. N., Bradford, S. A., & Walker, S. L. (2009a). Escherichia coli O157:H7 transport in saturated porous media: role of solution chemistry and surface macromolecules. Environmental Science and Technology, 43(12), 4340–4347.

    Article  CAS  Google Scholar 

  • Kim, H. N., Hong, Y., Lee, I., Bradford, S. A., & Walker, S. L. (2009b). Surface characteristics and adhesion behavior of Escherichia coli O157: H7: role of extracellular macromolecules. Biomacromolecules, 10(9), 2556–2564.

    Article  CAS  Google Scholar 

  • Koda, S., Miyamoto, M., Toma, M., Matsuoka, T., & Maebayashi, M. (2009). Inactivation of Escherichia coli and Streptococcus mutans by ultrasound at 500 kHz. Ultrasonics Sonochemistry, 16(5), 655–659.

    Article  CAS  Google Scholar 

  • Labatiuk, C. W., Belosevic, M., & Finch, G. R. (1992). Factors influencing the infectivity of Giardia-Muris cysts following ozone inactivation in laboratory and natural-waters. Water Research, 26(6), 733–743.

    Article  CAS  Google Scholar 

  • Lee, H. I., Zhou, B., Liang, W., Feng, H., & Martin, S. E. (2009). Inactivation of Escherichia coli cells with sonication, manosonication, thermosonication, and manothermosonication: microbial responses and kinetics modeling. Journal of Food Engineering, 93(3), 354–364.

    Article  Google Scholar 

  • Manas, P., & Pagan, R. (2005). Microbial inactivation by new technologies of food preservation. Journal of Applied Microbiology, 98(6), 1387–1399.

    Article  CAS  Google Scholar 

  • Marchesini, G., Fasolato, L., Novelli, E., Balzan, S., Contiero, B., Montemurro, F., Andrighetto, I., & Segato, S. (2015). Ultrasonic inactivation of microorganisms: a compromise between lethal capacity and sensory quality of milk. Innovative Food Science & Emerging Technologies, 29, 215–221.

    Article  CAS  Google Scholar 

  • Mazmanci, M. A., & Unyayar, A. (2005). Decolourisation of Reactive Black 5 by Funalia trogii immobilised on Luffa cylindrica sponge. Process Biochemistry, 40(1), 337–342.

    Article  CAS  Google Scholar 

  • McCarthy, J. F., McKay, L. D., & Bruner, D. D. (2002). Influence of ionic strength and cation charge on transport of colloidal particles in fractured shale saprolite. Environmental Science and Technology, 36(17), 3735–3743.

    Article  CAS  Google Scholar 

  • Naddeo, V., Belgiorno, V., & Napoli, R. M. A. (2007). Behaviour of natural organic matter during ultrasonic irradiation. Desalination, 210(1–3), 175–182.

    Article  CAS  Google Scholar 

  • Pinto, F., Maillard, J. Y., & Denyer, S. P. (2010). Effect of surfactants, temperature, and sonication on the virucidal activity of polyhexamethylene biguanide against the bacteriophage MS2. American Journal of Infection Control, 38(5), 393–398.

    Article  CAS  Google Scholar 

  • Richardson, S. D. (2003). Disinfection by-products and other emerging contaminants in drinking water. Trac-Trend Analytical Chemistry, 22(10), 666–684.

    Article  CAS  Google Scholar 

  • Richardson, S. D., & Ternes, T. A. (2011). Water analysis: emerging contaminants and current issues. Analytical Chemistry, 83(12), 4614–4648.

    Article  CAS  Google Scholar 

  • Sesal, N. C., & Kekeç, Ö. (2014). Effects of pulsed ultrasound on Escherichia coli and Staphylococcus aureus. Transactions of the Royal Society of Tropical Medicine and Hygiene, 108(6), 348–353.

    Article  Google Scholar 

  • Stanley, K. D., Golden, D. A., Williams, R. C., & Weiss, J. (2004). Inactivation of Escherichia coli O157: H7 by high-intensity ultrasonication in the presence of salts. Food Bourne Pathogens & Disease, 1(4), 267–280.

    Article  Google Scholar 

  • Tong, M. P., Zhu, P. T., Jiang, X. J., & Kim, H. (2011). Influence of natural organic matter on the deposition kinetics of extracellular polymeric substances (EPS) on silica. Colloids and Surfaces B: Biointerfaces, 87(1), 151–158.

    Article  CAS  Google Scholar 

  • Ugarte‐Romero, E., Feng, H., Martin, S. E., Cadwallader, K. R., & Robinson, S. J. (2006). Inactivation of Escherichia coli with power ultrasound in apple cider. Journal of Food Science, 71(2), E102–E108.

    Article  Google Scholar 

  • Vajnhandl, S., Željko, T., Majcen Le Marechal, A., & Valh, J. V. (2014). Feasibility study of ultrasound as water disinfection technology. Desalination and Water Treatment, (ahead-of-print), 1–7.

  • Van Tran, A. (2008). Removal of COD and color loads in bleached kraft pulp effluents by bottom ashes from boilers. Environmental Technology, 29(7), 775–784.

    Article  Google Scholar 

  • Walker, S. L., Redman, J. A., & Elimelech, M. (2004). Role of cell surface lipopolysaccharides in Escherichia coli K12 adhesion and transport. Langmuir, 20(18), 7736–7746.

    Article  CAS  Google Scholar 

  • Wu, X. G., Joyce, E. M., & Mason, T. J. (2012). Evaluation of the mechanisms of the effect of ultrasound on Microcystis aeruginosa at different ultrasonic frequencies. Water Research, 46(9), 2851–2858.

    Article  CAS  Google Scholar 

  • Yang, H. Y., Kim, H., & Tong, M. P. (2012). Influence of humic acid on the transport behavior of bacteria in quartz sand. Colloids and Surfaces B: Biointerfaces, 91, 122–129.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Programs through the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Science and Technology (NRF-2011-0023782).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyunjung Kim.

Additional information

Re-submitted on June 05, 2015

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, G., Han, Y., Choi, S.Q. et al. Bacterial Inactivation by Ultrasonic Waves: Role of Ionic Strength, Humic Acid, and Temperature. Water Air Soil Pollut 226, 304 (2015). https://doi.org/10.1007/s11270-015-2573-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2573-5

Keywords

Navigation