The Role of Exhausted Coffee Compounds on Metal Ions Sorption

Abstract

In the present work, the role of chemical compounds of one abundant vegetable waste, exhausted coffee, on Cr(VI), Cu(II), and Ni(II) sorption has been investigated. For this purpose, exhausted coffee was subjected to sequential extractions by using dichloromethane (DCM), ethanol (EtOH), water, and NaOH 1 %. The raw and treated biomass resulting from the extractions were used for metal ions sorption. Sorption results were discussed taking into consideration polarity and functional groups of raw and treated biomass. In general, the successive removal of extractives led to an insignificant increase in the studied metal ions sorption after DCM, EtOH, and water. The sorption results using free-extractive materials showed that metal sorption can be effectively achieved without this non-structural fraction of the sorbent. Alkaline hydrolysis destroyed in part the structural compounds of the sorbent resulting in an insignificant decrease of chromium removal while a significant increase of copper and nickel sorption was observed. The determination of elemental ratios of exhausted coffee and all treated biomass evidenced the involvement of oxygen functional groups in copper and nickel sorption. FTIR analysis confirmed the involvement of lignin moieties in the chromium sorption by exhausted coffee. As a final remark, this study shows that the sequential extraction opens new expectations to the total valorisation of lignocellulosic-based biomasses. The extractives can be removed and used as a biosource of valuable compounds, and the resulting waste can be used as a sorbent for metal ions keeping the same capacity for metal sorption as the non-extracted biomass.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Akar, S. T., Yilmazer, D., Celik, S., Balk, Y. Y., & Akar, T. (2013). On the utilization of a lignocellulosic waste as an excellent dye remover: modification, characterization and mechanism analysis. Chemical Engineering Journal, 229, 257–266.

    CAS  Article  Google Scholar 

  2. Anagnostopoulos, V. A., Koutsoukos, P. G., & Symeopoulos, B. D. (2015). Removal of U(VI) aquatic systems, using winery by-products as biosorbents: equilibrium, kinetic, and speciation studies. Water, Air, & Soil Pollution. doi:10.1007/s11270-015-2379-5.

    Google Scholar 

  3. Anastopoulos, I., Massas, I., & Ehaliotis, C. (2013). Composting improves biosorption of Pb2+ and Ni2+ by renewable lignocellulosic materials. Characteristics and mechanism involved. Chemical Engineering Journal, 231, 245–254.

    CAS  Article  Google Scholar 

  4. Bhatnagar, A., Sillanpää, M., & Witek-Krowiak, A. (2015). Agricultural waste peels as versatile biomass for water purification—a review. Chemical Engineering Journal, 270, 244–271.

    CAS  Article  Google Scholar 

  5. Boeriu, C. G., Bravo, D., Gosselink, R. J. A., & van Dam, J. E. G. (2004). Characterisation of structure-dependent functional properties of lignin with infrared spectroscopy. Industrial Crops and Products, 20, 205–218.

    CAS  Article  Google Scholar 

  6. Caetano, N., Silva, V., & Mata, T. M. (2012). Valorisation of coffee grounds for biodiesel production. Chemical Engineering Transactions, 26, 267–272.

    Google Scholar 

  7. Chabannes, M., Ruel, K., Yoshinaga, A., Chabbert, B., Jauneau, A., Joseleau, J. P., & Boudet, A. M. (2001). In situ analysis of lignins in transgenic tobacco reveals a differential impact of individual transformations on the spatial patterns of lignin deposition at the cellular and subcellular levels. The Plant Journal, 28, 271–282.

    CAS  Article  Google Scholar 

  8. Chakar, F. S., & Ragauskas, A. J. (2004). Review of current and future softwood kraft lignin process chemistry. Industrial Crops and Products, 20, 131–141.

    CAS  Article  Google Scholar 

  9. Clesceri, L. S., Greenberg, A. E., & Eaton, A. D. (1998). Standard methods for the determination of water and wastewater (20th ed., pp. 3–65). Baltimore: United Book Press.

    Google Scholar 

  10. Dávila-Guzmán, N. E., Cerino-Córdoba, F. J., Soto-Regalado, E., Rangel-Méndez, J. E., Díaz-Flores, P. O., Garza-González, M. T., & Loredo-Medrano, J. A. (2013). Copper biosorption by spent coffee ground: equilibrium, kinetics, and mechanism. Clean - Soil, Air, Water, 41, 557–564.

    Article  Google Scholar 

  11. Deiana, A. C., Sardella, M. F., Silva, H., Amaya, A., & Tancredi, N. (2009). Use of grape stalk, a waste of the viticulture industry, to obtain activated carbon. Journal of Hazardous Materials, 172, 13–19.

    CAS  Article  Google Scholar 

  12. Djilani, C., Zaghdoudi, R., Modarressi, A., Rogalski, M., al Djazi, F., & Lallam, A. (2012). Elimination of organic micropollutants by adsorption on activated carbon prepared from agricultural waste. Chemical Engineering Journal, 189–190, 203–212.

    Article  Google Scholar 

  13. Fengel, D., & Wegener, G. (1984). Constituents of bark. In Wood: chemistry ultrastructure reactions (pp. 241–267). Berlin and New York: Walter de Gruyter.

  14. Fiol, N., Escudero, C., & Villaescusa, I. (2008a). Chromium sorption and Cr(VI) reduction to Cr(III) by grape stalks and yohimbe bark. Bioresource Technology, 99, 5030–5036.

    CAS  Article  Google Scholar 

  15. Fiol, N., Escudero, C., & Villaescusa, I. (2008b). Re-use of exhausted ground coffee waste for Cr(VI) sorption. Separation Science and Technology, 43, 582–596.

    CAS  Article  Google Scholar 

  16. Fradinho, D. M., Neto, C. P., Evtuguin, D., Jorge, F. C., Irle, M. A., Gil, M. H., & de Jesus, J. P. (2002). Chemical characterization of bark and of alkaline bark extracts from maritime pine grown in Portugal. Industrial Crops and Products, 16, 23–32.

    CAS  Article  Google Scholar 

  17. García-Pérez, J. V., García-Alvarado, M. A., Carcela, J. A., & Muleta, A. (2010). Extraction kinetics modeling of antioxidants from grape stalk (Vitis vinífera var Bobal): influence of drying conditions. Journal of Food Engineering, 101, 49–58.

    Article  Google Scholar 

  18. Haussard, M., Gaballah, I., Kanari, N., de Donato, P., Barrès, O., & Villieras, F. (2003). Separation of hydrocarbons and lipid from water using treated bark. Water Research, 37, 362–374.

    CAS  Article  Google Scholar 

  19. Herbert, H. L. (1971). Lignins: occurrence, formation, structure and reactions. In K. U. Sarkanen & C. H. Ludwig (Eds.), Infrared spectra (pp. 267–297). New York: John Wiley & Sons.

    Google Scholar 

  20. Hubbe, M. A., Hasan, S. H., & Ducoste, J. J. (2011). Metal ion sorption: a review. 1. Metals. Bioresources, 6, 2161–2287.

    Google Scholar 

  21. Hubbe, M. A., Beck, K. R., O’Neal, W. G., & Sharma, Y. C. (2012). Cellulosic substrates for removal of pollutants from aqueous systems: a review. 2. Dyes. Bioresources, 7, 2592–2687.

    CAS  Google Scholar 

  22. Jorge, F. S., Santos, T. M., de Jesus, J. P., & Banks, W. B. (1999). Reactions between Cr(VI) and wood and its model compounds. Wood Science and Technology, 33, 501–517.

    CAS  Article  Google Scholar 

  23. Kante, K., Nieto-Delgado, C., Rangel-Méndez, J. R., & Bandosz, T. J. (2012). Spent coffee-based activated carbon: specific surface features and their importance for H2S separation process. Journal of Hazardous Materials, 201–202, 141–147.

    Article  Google Scholar 

  24. Kim, D., Om, J., & Kim, C. (2012). Hexavalent chromium reduction by water-soluble antioxidants. Chemical Sciences Journal, 88, 1–6.

    Google Scholar 

  25. Kumar, P., Barrett, D. M., Delwiche, J., & Stroeve, P. (2009). Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial & Engineering Chemistry Research, 48, 3713–3729.

    CAS  Article  Google Scholar 

  26. Kyzas, G. Z. (2012). Commercial coffee wastes as materials for adsorption of heavy metals from aqueous solutions. Materials, 5, 1826–1840.

    CAS  Article  Google Scholar 

  27. Lee, B. G., & Rowell, R. M. (2004). Removal of heavy metal ions from aqueous solutions using lignocellulosic fibers. Journal of Natural Fibers, 1, 97–108.

    CAS  Article  Google Scholar 

  28. Low, L. W., Teng, T. T., Ahmad, A., Morad, N., & Wong, Y. S. (2011). A novel pretreatment method of lignocellulosic material as adsorbent and kinetic study of dye waste adsorption. Water, Air, & Soil Pollution, 218, 293–306.

    CAS  Article  Google Scholar 

  29. Mazzaferro, L. S., Monteiro Cuña, M., & Breccia, J. D. (2011). Production of xylooligosaccharides by chemo-enzimatic treatment of agricultural by-products. Bioresources, 6, 5050–5061.

    CAS  Google Scholar 

  30. Mendes, J. A. S., Prozil, S. O., Evtuguin, D. V., & Lopes, L. P. C. (2013). Towards comprehensive utilization of winemaking residues: characterisation of grape skins from red grape pomaces of variety Touriga Nacional. Industrial Crops and Products, 43, 25–32.

    CAS  Article  Google Scholar 

  31. Miranda, I., Gominho, J., Mirra, I., & Pereira, H. (2013). Fractioning and chemical characterization of barks of Betula pendula and Eucalyptus globulus. Industrial Crops and Products, 41, 299–305.

    CAS  Article  Google Scholar 

  32. Miretzky, P., & Cirelli, A. (2010). Cr(VI) and Cr(III) removal from aqueous solution by raw and modified lignocellulosic materials: a review. Journal of Hazardous Materials, 180, 1–19.

    CAS  Article  Google Scholar 

  33. Mussatto, S., Machado, E., Martins, S., & Teixeira, J. (2011). Production, composition and application of coffee and its industrial residues. Food and Bioprocess Technology, 4, 661–672.

    CAS  Article  Google Scholar 

  34. Nezahuatl-Muñoz, A. R., de María Guillén-Jiménez, F., Chávez-Gómez, B., Villegas-Garrido, T. L., & Cristiani-Urbina, E. (2012). Kinetic study of the effect of pH on hexavalent and trivalent chromium removal from aqueous solution by Cupressus lusitanica bark. Water, Air, & Soil Pollution, 223, 625–641.

    Article  Google Scholar 

  35. Nurchi, V. M., & Villaescusa, I. (2008). Agricultural biomasses as sorbents of some trace metals. Coordination Chemistry Reviews, 252, 1178–1188.

    CAS  Article  Google Scholar 

  36. Nurchi, V. M., Crisponi, G., & Villaescusa, I. (2010). Chemical equilibria in wastewaters during toxic metal ion removal by agricultural biomass. Coordination Chemistry Reviews, 254, 2181–2192.

    CAS  Article  Google Scholar 

  37. Oliveira, W. E., Franca, A. S., Oliveira, L. S., & Rocha, S. D. (2008). Untreated coffee husks as biosorbents for the removal of heavy metals from aqueous solutions. Journal of Hazardous Materials, 152, 1073–1081.

    CAS  Article  Google Scholar 

  38. Olivella, M. À., Jové, P., Şen, A., Pereira, H., Villaescusa, I., & Fiol, N. (2011). Sorption performance of Quercus cerris cork with polycyclic aromatic hydrocarbons and toxicity testing. Bioresources, 6, 3363–3375.

    CAS  Google Scholar 

  39. Olivella, M. À., Fiol, N., de la Torre, F., Poch, J., & Villaescusa, I. (2012). A mechanistic approach to methylene blue sorption on two vegetable wastes: cork bark and grape stalks. Bioresources, 7, 3340–3354.

    Google Scholar 

  40. Olorundare, O. F., Msagati, T. A. M., Krause, R. W. M., Okonkwo, J. O., & Mamba, B. B. (2014). Activated carbon from lignocellulosic waste residues: effect of activating agent on porosity characteristics and use as adsorbents for organic species. Water, Air, & Soil Pollution. doi:10.1007/s11270-014-1876-2.

    Google Scholar 

  41. Pappa, P., Pellera, F. M., & Gidarakos, E. (2012). Characterization of biochar produced from spent coffee waste. In Proceedings of 3 rd International Conference on Industrial and Hazardous Waste Management, September, Greece, p. 1–8.

  42. Pereira, H. (2007). The chemical composition of cork. In H. Pereira (Ed.), Cork: biology, production and uses (pp. 55–101). Amsterdam: Elsevier.

    Google Scholar 

  43. Perez-Ameneiro, M., Bustos, G., Vecino, X., Barbosa-Pereira, L., Cruz, J. M., & Moldes, A. B. (2015). Heterogenous lignocellulosic composites as bio-based adsorbents for wastewater dye removal: a kinetic comparison. Water, Air, & Soil Pollution. doi:10.1007/s11270-015-2393-7.

    Google Scholar 

  44. Prabhakaran, S. K., Vijayaraghavan, K., & Balasubramanian, R. (2009). Removal of Cr(VI) ions by spent tea and coffee dusts: reduction to Cr(III) and biosorption. Industrial & Engineering Chemistry Research, 48, 2117–2133.

    Article  Google Scholar 

  45. Pujol, D., Bartrolí, M., Fiol, N., de la Torre, F., Villaescusa, I., & Poch, J. (2013a). Modelling synergistic sorption of Cr(VI), Cu(II) and Ni(II) onto exhausted coffee wastes from binary mixtures Cr(VI)-Cu(II) an Cr(VI)-Ni(II). Chemical Engineering Journal, 230, 396–405.

    CAS  Article  Google Scholar 

  46. Pujol, D., Liu, C., Gominho, J., Olivella, M. À., Fiol, N., Villaescusa, I., & Pereira, H. (2013b). The chemical composition of exhausted coffee waste. Industrial Crops and Products, 50, 423–429.

    CAS  Article  Google Scholar 

  47. Rao, K. S., Mohapatra, M., Anand, S., & Venkateswarlu, P. (2010). Review on cadmium removal from aqueous solutions. International Journal of Engineering, Science and Technology, 2, 81–103.

    Google Scholar 

  48. Rey-Castro, C., Mongin, S., Huidobro, C., David, C., Salvador, J., Garcés, J. L., Galceran, J., Mas, F., & Puy, J. (2009). Effective affinity distribution for the binding of metal ions to a generic fulvic acid in natural waters. Environmental Science & Technology, 43, 7184–7191.

    CAS  Article  Google Scholar 

  49. Rowe, J. W., & Conner, A. H. (1979). Extractives in eastern hardwoods—a review (General technical report, FPL 18). Resource document. US Department of Agriculture. http://www.fpl.fs.fed.us/documnts/fplgtr/fplgtr18.pdf. Access 1 Jun 2015.

  50. Şen, A., Olivella, M. À., Fiol, N., Miranda, I., Villaescusa, I., & Pereira, H. (2012). Removal of chromium(VI) in aqueous environments using cork and heat-treated cork samples from Quercus Cerris and Quercus suber. Bioresources, 7, 4843–4857.

    Google Scholar 

  51. Shen, Y. S., Wang, S. L., Huang, S. T., Tzou, Y. M., & Huang, J. H. (2010). Biosorption of Cr(VI) by coconut coir: spectroscopic investigation on the reaction mechanism of Cr(VI) with lignocellulosic material. Journal of Hazardous Materials, 179, 160–165.

    CAS  Article  Google Scholar 

  52. Sun, Y., & Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology, 83, 1–11.

    CAS  Article  Google Scholar 

  53. Sun, W. L., Xia, J., Li, S., & Sun, F. (2012). Effect of natural organic matter (NOM) on Cu(II) adsorption by multi-walled carbon nanotubes: relationship with NOM properties. Chemical Engineering Journal, 200–202, 627–636.

    Article  Google Scholar 

  54. Tokimoto, T., Kawasaki, N., Nakamura, T., Akutagawa, J., & Tanada, S. (2005). Removal of lead ions in drinking water by coffee grounds as vegetable biomass. Journal of Colloid and Interface Science, 281, 56–61.

    CAS  Article  Google Scholar 

  55. Tsai, W. T., Liu, S. C., & Hsieh, C. H. (2012). Preparation and fuel properties of biochars from the pyrolisis of exhausted coffee residue. Journal of Analytical and Applied Pyrolysis, 93, 63–67.

    CAS  Article  Google Scholar 

  56. Utomo, H. D., & Hunter, K. A. (2010). Particle concentration effect: adsorption of divalent metal ions on coffee grounds. Bioresource Technology, 101, 1482–1486.

    Article  Google Scholar 

  57. Villaescusa, I., Fiol, N., Cristiani, F., Floris, C., Lai, S., & Nurchi, V. M. (2002). Copper(II) and nickel(II) uptake from aqueous solutions by cork waste: a NMR and potentiometric study. Polyhedron, 21, 1363–1367.

    CAS  Article  Google Scholar 

  58. Villaescusa, I., Fiol, N., Poch, J., Bianchi, A., & Bazzicalupi, C. (2011). Mechanism of paracetamol removal by vegetable wastes: the contribution of π–π interactions, hydrogen bonding and hydrophobic effect. Desalination, 270, 135–142.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This research was funded by the Spanish Ministry of Science and Innovation as part of the projects CTM2010-15185 and CTM2012-37215-C02-01. The authors were financially supported by a fellowship from Chinese Scholarship Council [2011] 3005 and by the Spanish Ministry of Education, Culture and Sport (MHE2011-00258). We thank Dr. Helena Pereira of the Centro de Estudos Florestais (Lisbon) for her advice and help in extraction procedures.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Isabel Villaescusa.

Additional information

Highlights

• Sequential extraction: new approach to the study of metal sorption by biomass.

• Removal of apolar and polar extractives slightly increases metal ions sorption.

• Lignin is involved on Cu(II) and Ni(II) sorption and Cr(VI) reduction/sorption.

• Oxygen functional groups are involved in Cu and Ni sorption.

• New expectations for EC: biosource of valuable molecules and sorbent for metals.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Pujol, D., Olivella, M.À. et al. The Role of Exhausted Coffee Compounds on Metal Ions Sorption. Water Air Soil Pollut 226, 289 (2015). https://doi.org/10.1007/s11270-015-2568-2

Download citation

Keywords

  • Sequential extraction
  • Polarity
  • Chromium
  • Divalent metals