Water, Air, & Soil Pollution

, 226:289 | Cite as

The Role of Exhausted Coffee Compounds on Metal Ions Sorption

  • C. Liu
  • D. Pujol
  • M. À. Olivella
  • F. de la Torre
  • N. Fiol
  • J. Poch
  • Isabel Villaescusa
Article

Abstract

In the present work, the role of chemical compounds of one abundant vegetable waste, exhausted coffee, on Cr(VI), Cu(II), and Ni(II) sorption has been investigated. For this purpose, exhausted coffee was subjected to sequential extractions by using dichloromethane (DCM), ethanol (EtOH), water, and NaOH 1 %. The raw and treated biomass resulting from the extractions were used for metal ions sorption. Sorption results were discussed taking into consideration polarity and functional groups of raw and treated biomass. In general, the successive removal of extractives led to an insignificant increase in the studied metal ions sorption after DCM, EtOH, and water. The sorption results using free-extractive materials showed that metal sorption can be effectively achieved without this non-structural fraction of the sorbent. Alkaline hydrolysis destroyed in part the structural compounds of the sorbent resulting in an insignificant decrease of chromium removal while a significant increase of copper and nickel sorption was observed. The determination of elemental ratios of exhausted coffee and all treated biomass evidenced the involvement of oxygen functional groups in copper and nickel sorption. FTIR analysis confirmed the involvement of lignin moieties in the chromium sorption by exhausted coffee. As a final remark, this study shows that the sequential extraction opens new expectations to the total valorisation of lignocellulosic-based biomasses. The extractives can be removed and used as a biosource of valuable compounds, and the resulting waste can be used as a sorbent for metal ions keeping the same capacity for metal sorption as the non-extracted biomass.

Keywords

Sequential extraction Polarity Chromium Divalent metals 

References

  1. Akar, S. T., Yilmazer, D., Celik, S., Balk, Y. Y., & Akar, T. (2013). On the utilization of a lignocellulosic waste as an excellent dye remover: modification, characterization and mechanism analysis. Chemical Engineering Journal, 229, 257–266.CrossRefGoogle Scholar
  2. Anagnostopoulos, V. A., Koutsoukos, P. G., & Symeopoulos, B. D. (2015). Removal of U(VI) aquatic systems, using winery by-products as biosorbents: equilibrium, kinetic, and speciation studies. Water, Air, & Soil Pollution. doi:10.1007/s11270-015-2379-5.Google Scholar
  3. Anastopoulos, I., Massas, I., & Ehaliotis, C. (2013). Composting improves biosorption of Pb2+ and Ni2+ by renewable lignocellulosic materials. Characteristics and mechanism involved. Chemical Engineering Journal, 231, 245–254.CrossRefGoogle Scholar
  4. Bhatnagar, A., Sillanpää, M., & Witek-Krowiak, A. (2015). Agricultural waste peels as versatile biomass for water purification—a review. Chemical Engineering Journal, 270, 244–271.CrossRefGoogle Scholar
  5. Boeriu, C. G., Bravo, D., Gosselink, R. J. A., & van Dam, J. E. G. (2004). Characterisation of structure-dependent functional properties of lignin with infrared spectroscopy. Industrial Crops and Products, 20, 205–218.CrossRefGoogle Scholar
  6. Caetano, N., Silva, V., & Mata, T. M. (2012). Valorisation of coffee grounds for biodiesel production. Chemical Engineering Transactions, 26, 267–272.Google Scholar
  7. Chabannes, M., Ruel, K., Yoshinaga, A., Chabbert, B., Jauneau, A., Joseleau, J. P., & Boudet, A. M. (2001). In situ analysis of lignins in transgenic tobacco reveals a differential impact of individual transformations on the spatial patterns of lignin deposition at the cellular and subcellular levels. The Plant Journal, 28, 271–282.CrossRefGoogle Scholar
  8. Chakar, F. S., & Ragauskas, A. J. (2004). Review of current and future softwood kraft lignin process chemistry. Industrial Crops and Products, 20, 131–141.CrossRefGoogle Scholar
  9. Clesceri, L. S., Greenberg, A. E., & Eaton, A. D. (1998). Standard methods for the determination of water and wastewater (20th ed., pp. 3–65). Baltimore: United Book Press.Google Scholar
  10. Dávila-Guzmán, N. E., Cerino-Córdoba, F. J., Soto-Regalado, E., Rangel-Méndez, J. E., Díaz-Flores, P. O., Garza-González, M. T., & Loredo-Medrano, J. A. (2013). Copper biosorption by spent coffee ground: equilibrium, kinetics, and mechanism. Clean - Soil, Air, Water, 41, 557–564.CrossRefGoogle Scholar
  11. Deiana, A. C., Sardella, M. F., Silva, H., Amaya, A., & Tancredi, N. (2009). Use of grape stalk, a waste of the viticulture industry, to obtain activated carbon. Journal of Hazardous Materials, 172, 13–19.CrossRefGoogle Scholar
  12. Djilani, C., Zaghdoudi, R., Modarressi, A., Rogalski, M., al Djazi, F., & Lallam, A. (2012). Elimination of organic micropollutants by adsorption on activated carbon prepared from agricultural waste. Chemical Engineering Journal, 189–190, 203–212.CrossRefGoogle Scholar
  13. Fengel, D., & Wegener, G. (1984). Constituents of bark. In Wood: chemistry ultrastructure reactions (pp. 241–267). Berlin and New York: Walter de Gruyter.Google Scholar
  14. Fiol, N., Escudero, C., & Villaescusa, I. (2008a). Chromium sorption and Cr(VI) reduction to Cr(III) by grape stalks and yohimbe bark. Bioresource Technology, 99, 5030–5036.CrossRefGoogle Scholar
  15. Fiol, N., Escudero, C., & Villaescusa, I. (2008b). Re-use of exhausted ground coffee waste for Cr(VI) sorption. Separation Science and Technology, 43, 582–596.CrossRefGoogle Scholar
  16. Fradinho, D. M., Neto, C. P., Evtuguin, D., Jorge, F. C., Irle, M. A., Gil, M. H., & de Jesus, J. P. (2002). Chemical characterization of bark and of alkaline bark extracts from maritime pine grown in Portugal. Industrial Crops and Products, 16, 23–32.CrossRefGoogle Scholar
  17. García-Pérez, J. V., García-Alvarado, M. A., Carcela, J. A., & Muleta, A. (2010). Extraction kinetics modeling of antioxidants from grape stalk (Vitis vinífera var Bobal): influence of drying conditions. Journal of Food Engineering, 101, 49–58.CrossRefGoogle Scholar
  18. Haussard, M., Gaballah, I., Kanari, N., de Donato, P., Barrès, O., & Villieras, F. (2003). Separation of hydrocarbons and lipid from water using treated bark. Water Research, 37, 362–374.CrossRefGoogle Scholar
  19. Herbert, H. L. (1971). Lignins: occurrence, formation, structure and reactions. In K. U. Sarkanen & C. H. Ludwig (Eds.), Infrared spectra (pp. 267–297). New York: John Wiley & Sons.Google Scholar
  20. Hubbe, M. A., Hasan, S. H., & Ducoste, J. J. (2011). Metal ion sorption: a review. 1. Metals. Bioresources, 6, 2161–2287.Google Scholar
  21. Hubbe, M. A., Beck, K. R., O’Neal, W. G., & Sharma, Y. C. (2012). Cellulosic substrates for removal of pollutants from aqueous systems: a review. 2. Dyes. Bioresources, 7, 2592–2687.Google Scholar
  22. Jorge, F. S., Santos, T. M., de Jesus, J. P., & Banks, W. B. (1999). Reactions between Cr(VI) and wood and its model compounds. Wood Science and Technology, 33, 501–517.CrossRefGoogle Scholar
  23. Kante, K., Nieto-Delgado, C., Rangel-Méndez, J. R., & Bandosz, T. J. (2012). Spent coffee-based activated carbon: specific surface features and their importance for H2S separation process. Journal of Hazardous Materials, 201–202, 141–147.CrossRefGoogle Scholar
  24. Kim, D., Om, J., & Kim, C. (2012). Hexavalent chromium reduction by water-soluble antioxidants. Chemical Sciences Journal, 88, 1–6.Google Scholar
  25. Kumar, P., Barrett, D. M., Delwiche, J., & Stroeve, P. (2009). Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial & Engineering Chemistry Research, 48, 3713–3729.CrossRefGoogle Scholar
  26. Kyzas, G. Z. (2012). Commercial coffee wastes as materials for adsorption of heavy metals from aqueous solutions. Materials, 5, 1826–1840.CrossRefGoogle Scholar
  27. Lee, B. G., & Rowell, R. M. (2004). Removal of heavy metal ions from aqueous solutions using lignocellulosic fibers. Journal of Natural Fibers, 1, 97–108.CrossRefGoogle Scholar
  28. Low, L. W., Teng, T. T., Ahmad, A., Morad, N., & Wong, Y. S. (2011). A novel pretreatment method of lignocellulosic material as adsorbent and kinetic study of dye waste adsorption. Water, Air, & Soil Pollution, 218, 293–306.CrossRefGoogle Scholar
  29. Mazzaferro, L. S., Monteiro Cuña, M., & Breccia, J. D. (2011). Production of xylooligosaccharides by chemo-enzimatic treatment of agricultural by-products. Bioresources, 6, 5050–5061.Google Scholar
  30. Mendes, J. A. S., Prozil, S. O., Evtuguin, D. V., & Lopes, L. P. C. (2013). Towards comprehensive utilization of winemaking residues: characterisation of grape skins from red grape pomaces of variety Touriga Nacional. Industrial Crops and Products, 43, 25–32.CrossRefGoogle Scholar
  31. Miranda, I., Gominho, J., Mirra, I., & Pereira, H. (2013). Fractioning and chemical characterization of barks of Betula pendula and Eucalyptus globulus. Industrial Crops and Products, 41, 299–305.CrossRefGoogle Scholar
  32. Miretzky, P., & Cirelli, A. (2010). Cr(VI) and Cr(III) removal from aqueous solution by raw and modified lignocellulosic materials: a review. Journal of Hazardous Materials, 180, 1–19.CrossRefGoogle Scholar
  33. Mussatto, S., Machado, E., Martins, S., & Teixeira, J. (2011). Production, composition and application of coffee and its industrial residues. Food and Bioprocess Technology, 4, 661–672.CrossRefGoogle Scholar
  34. Nezahuatl-Muñoz, A. R., de María Guillén-Jiménez, F., Chávez-Gómez, B., Villegas-Garrido, T. L., & Cristiani-Urbina, E. (2012). Kinetic study of the effect of pH on hexavalent and trivalent chromium removal from aqueous solution by Cupressus lusitanica bark. Water, Air, & Soil Pollution, 223, 625–641.CrossRefGoogle Scholar
  35. Nurchi, V. M., & Villaescusa, I. (2008). Agricultural biomasses as sorbents of some trace metals. Coordination Chemistry Reviews, 252, 1178–1188.CrossRefGoogle Scholar
  36. Nurchi, V. M., Crisponi, G., & Villaescusa, I. (2010). Chemical equilibria in wastewaters during toxic metal ion removal by agricultural biomass. Coordination Chemistry Reviews, 254, 2181–2192.CrossRefGoogle Scholar
  37. Oliveira, W. E., Franca, A. S., Oliveira, L. S., & Rocha, S. D. (2008). Untreated coffee husks as biosorbents for the removal of heavy metals from aqueous solutions. Journal of Hazardous Materials, 152, 1073–1081.CrossRefGoogle Scholar
  38. Olivella, M. À., Jové, P., Şen, A., Pereira, H., Villaescusa, I., & Fiol, N. (2011). Sorption performance of Quercus cerris cork with polycyclic aromatic hydrocarbons and toxicity testing. Bioresources, 6, 3363–3375.Google Scholar
  39. Olivella, M. À., Fiol, N., de la Torre, F., Poch, J., & Villaescusa, I. (2012). A mechanistic approach to methylene blue sorption on two vegetable wastes: cork bark and grape stalks. Bioresources, 7, 3340–3354.Google Scholar
  40. Olorundare, O. F., Msagati, T. A. M., Krause, R. W. M., Okonkwo, J. O., & Mamba, B. B. (2014). Activated carbon from lignocellulosic waste residues: effect of activating agent on porosity characteristics and use as adsorbents for organic species. Water, Air, & Soil Pollution. doi:10.1007/s11270-014-1876-2.Google Scholar
  41. Pappa, P., Pellera, F. M., & Gidarakos, E. (2012). Characterization of biochar produced from spent coffee waste. In Proceedings of 3 rd International Conference on Industrial and Hazardous Waste Management, September, Greece, p. 1–8.Google Scholar
  42. Pereira, H. (2007). The chemical composition of cork. In H. Pereira (Ed.), Cork: biology, production and uses (pp. 55–101). Amsterdam: Elsevier.CrossRefGoogle Scholar
  43. Perez-Ameneiro, M., Bustos, G., Vecino, X., Barbosa-Pereira, L., Cruz, J. M., & Moldes, A. B. (2015). Heterogenous lignocellulosic composites as bio-based adsorbents for wastewater dye removal: a kinetic comparison. Water, Air, & Soil Pollution. doi:10.1007/s11270-015-2393-7.Google Scholar
  44. Prabhakaran, S. K., Vijayaraghavan, K., & Balasubramanian, R. (2009). Removal of Cr(VI) ions by spent tea and coffee dusts: reduction to Cr(III) and biosorption. Industrial & Engineering Chemistry Research, 48, 2117–2133.CrossRefGoogle Scholar
  45. Pujol, D., Bartrolí, M., Fiol, N., de la Torre, F., Villaescusa, I., & Poch, J. (2013a). Modelling synergistic sorption of Cr(VI), Cu(II) and Ni(II) onto exhausted coffee wastes from binary mixtures Cr(VI)-Cu(II) an Cr(VI)-Ni(II). Chemical Engineering Journal, 230, 396–405.CrossRefGoogle Scholar
  46. Pujol, D., Liu, C., Gominho, J., Olivella, M. À., Fiol, N., Villaescusa, I., & Pereira, H. (2013b). The chemical composition of exhausted coffee waste. Industrial Crops and Products, 50, 423–429.CrossRefGoogle Scholar
  47. Rao, K. S., Mohapatra, M., Anand, S., & Venkateswarlu, P. (2010). Review on cadmium removal from aqueous solutions. International Journal of Engineering, Science and Technology, 2, 81–103.Google Scholar
  48. Rey-Castro, C., Mongin, S., Huidobro, C., David, C., Salvador, J., Garcés, J. L., Galceran, J., Mas, F., & Puy, J. (2009). Effective affinity distribution for the binding of metal ions to a generic fulvic acid in natural waters. Environmental Science & Technology, 43, 7184–7191.CrossRefGoogle Scholar
  49. Rowe, J. W., & Conner, A. H. (1979). Extractives in eastern hardwoods—a review (General technical report, FPL 18). Resource document. US Department of Agriculture. http://www.fpl.fs.fed.us/documnts/fplgtr/fplgtr18.pdf. Access 1 Jun 2015.
  50. Şen, A., Olivella, M. À., Fiol, N., Miranda, I., Villaescusa, I., & Pereira, H. (2012). Removal of chromium(VI) in aqueous environments using cork and heat-treated cork samples from Quercus Cerris and Quercus suber. Bioresources, 7, 4843–4857.Google Scholar
  51. Shen, Y. S., Wang, S. L., Huang, S. T., Tzou, Y. M., & Huang, J. H. (2010). Biosorption of Cr(VI) by coconut coir: spectroscopic investigation on the reaction mechanism of Cr(VI) with lignocellulosic material. Journal of Hazardous Materials, 179, 160–165.CrossRefGoogle Scholar
  52. Sun, Y., & Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology, 83, 1–11.CrossRefGoogle Scholar
  53. Sun, W. L., Xia, J., Li, S., & Sun, F. (2012). Effect of natural organic matter (NOM) on Cu(II) adsorption by multi-walled carbon nanotubes: relationship with NOM properties. Chemical Engineering Journal, 200–202, 627–636.CrossRefGoogle Scholar
  54. Tokimoto, T., Kawasaki, N., Nakamura, T., Akutagawa, J., & Tanada, S. (2005). Removal of lead ions in drinking water by coffee grounds as vegetable biomass. Journal of Colloid and Interface Science, 281, 56–61.CrossRefGoogle Scholar
  55. Tsai, W. T., Liu, S. C., & Hsieh, C. H. (2012). Preparation and fuel properties of biochars from the pyrolisis of exhausted coffee residue. Journal of Analytical and Applied Pyrolysis, 93, 63–67.CrossRefGoogle Scholar
  56. Utomo, H. D., & Hunter, K. A. (2010). Particle concentration effect: adsorption of divalent metal ions on coffee grounds. Bioresource Technology, 101, 1482–1486.CrossRefGoogle Scholar
  57. Villaescusa, I., Fiol, N., Cristiani, F., Floris, C., Lai, S., & Nurchi, V. M. (2002). Copper(II) and nickel(II) uptake from aqueous solutions by cork waste: a NMR and potentiometric study. Polyhedron, 21, 1363–1367.CrossRefGoogle Scholar
  58. Villaescusa, I., Fiol, N., Poch, J., Bianchi, A., & Bazzicalupi, C. (2011). Mechanism of paracetamol removal by vegetable wastes: the contribution of π–π interactions, hydrogen bonding and hydrophobic effect. Desalination, 270, 135–142.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • C. Liu
    • 1
    • 2
  • D. Pujol
    • 2
  • M. À. Olivella
    • 2
  • F. de la Torre
    • 2
  • N. Fiol
    • 2
  • J. Poch
    • 3
  • Isabel Villaescusa
    • 2
  1. 1.College of Environmental Science and EngineeringAnhui Normal UniversityWuhuChina
  2. 2.Chemical Engineering Department, Escola Politècnica SuperiorUniversitat de GironaGironaSpain
  3. 3.Applied Mathematics Department, Escola Politècnica SuperiorUniversitat de GironaGironaSpain

Personalised recommendations