Skip to main content

Advertisement

Log in

Effects of Carbamazepine on Two Microalgae Species Differing in Stress Resistance

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Carbamazepine (CBZ) is a representative of a group of compounds found in our rivers that have been classified as upcoming contaminants. Its pharmacological activity to treat mood and neurological disorders is based on its effects on ion channels, but effects on aquatic organisms have not yet been thoroughly investigated.

In our initial analysis, we compared CBZ effects on two microalgae species differing in CBZ sensitivity: Parachlorella kessleri and Neochloris pseudoalveolaris. While we observed a stimulation in the growth rate in cultures of P. kessleri in the presence of 10 μg L−1 CBZ, no effect on growth rates of N. pseudoalveolaris cultures could be documented at this concentration. Any higher tested CBZ concentration led to growth inhibition.

To gain insight into these effects, biochemical and physiological parameters of these two microalgae species were measured in the presence of CBZ in a concentration-dependent manner.

As the severe inhibition of growth rate correlated with a significant inhibition of most tested parameters in cultures of N. pseudoalveolaris, the primary reason for the adverse effect of CBZ on cultures of this microalgae species could not be identified. In cultures of N. pseudoalveolaris, experimental data indicate that inhibition of growth rate occurs when the microalgae are no longer able to compensate for adverse CBZ-induced ROS effects.

Analysis of the CBZ response of cultures of P. kessleri showed a reduction of growth stimulatory effect if the CBZ concentration exceeds a threshold value. In general, cultures of P. kessleri show a great potential to withstand CBZ as an environmental pollutant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Albani, F., Riva, R., & Baruzzi, A. (1995). Carbamazepine clinical pharmacology: a review. Pharmacopsychiatry, 28(6), 235–244.

    Article  CAS  Google Scholar 

  • Anonymous. (2012). Gewässergütekarte der Landeshauptstadt Hannver 2012.

    Google Scholar 

  • Apel, K., & Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55(1), 373–399.

    Article  CAS  Google Scholar 

  • Baos, R., García-Villada, L., Agrelo, M., López-Rodas, V., Hiraldo, F., & Costas, E. (2002). Short-term adaptation of microalgae in highly stressful environments: an experimental model analysing the resistance of Scenedesmus intermedius (Chlorophyceae) to the heavy metals mixture from the Aznalcóllar mine spill. European Journal of Phycology, 37(4), 593–600.

    Article  Google Scholar 

  • Bilger, W., & Björkman, O. (1990). Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynthesis Research, 25(3), 173–185.

    Article  CAS  Google Scholar 

  • Bläsing, O. E., Gibon, Y., Günther, M., Höhne, M., Morcuende, R., Osuna, D., et al. (2005). Sugars and circadian regulation make major contributions to the global regulation of diurnal gene expression in Arabidopsis. The Plant Cell, 17(12), 3257–3281.

    Article  Google Scholar 

  • Carvalho, A. M., Neto, A. M. P., Tonon, A. P., Pinto, E., Cardozo, K. H. M., Brigagao, M. R., et al. (2004). Circadian protection against oxidative stress in marine algae. Hypnos, 1(1), 142–157.

    Google Scholar 

  • Clara, M., Strenn, B., & Kreuzinger, N. (2004). Carbamazepine as a possible anthropogenic marker in the aquatic environment: investigations on the behaviour of Carbamazepine in wastewater treatment and during groundwater infiltration. Water Research, 38(4), 947–954.

    Article  CAS  Google Scholar 

  • Claustre, H., & Gostan, J. (1987). Adaptation of biochemical composition and cell size to irradiance in two microalgae: possible ecological implications. Marine Ecology Progress Series, 40(1), 167–174.

    Article  Google Scholar 

  • Dall’Osto, L., Holt, N. E., Kaligotla, S., Fuciman, M., Cazzaniga, S., Carbonera, D., et al. (2012). Zeaxanthin protects plant photosynthesis by modulating chlorophyll triplet yield in specific light-harvesting antenna subunits. The Journal of Biological Chemistry, 287(50), 41820–41834.

    Article  Google Scholar 

  • Dewez, D., Geoffroy, L., Vernet, G., & Popovic, R. (2005). Determination of photosynthetic and enzymatic biomarkers sensitivity used to evaluate toxic effects of copper and fludioxonil in alga Scenedesmus obliquus. Aquatic Toxicology, 74(2), 150–159.

    Article  CAS  Google Scholar 

  • Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, S. P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350–356.

    Article  CAS  Google Scholar 

  • Eshdat, Y., Holland, D., Faltin, Z., & Ben-Hayyim, G. (1997). Plant glutathione peroxidases. Physiologia Plantarum, 100(2), 234–240.

    Article  CAS  Google Scholar 

  • Fent, K., Weston, A. A., & Caminada, D. (2006). Ecotoxicology of human pharmaceuticals. Aquatic Toxicology, 76(2), 122–159.

    Article  CAS  Google Scholar 

  • Ferrari, B., Mons, R., Vollat, B., Fraysse, B., Paxeus, N., Giudice, R. L., et al. (2004). Environmental risk assessment of six human pharmaceuticals: are the current environmental risk assessment procedures sufficient for the protection of the aquatic environment? Environmental Toxicology and Chemistry, 23(5), 1344–1354.

    Article  CAS  Google Scholar 

  • Ferrari, B., Paxéus, N., Lo Giudice, R., Pollio, A., & Garric, J. (2003). Ecotoxicological impact of pharmaceuticals found in treated wastewaters: study of carbamazepine, clofibric acid, and diclofenac. Ecotoxicology and Environmental Safety, 55(3), 359–370.

    Article  CAS  Google Scholar 

  • Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909–930.

    Article  CAS  Google Scholar 

  • Grote, M., Schwake-Anduschus, C., Michel, R., Stevens, H., Heyser, W., Langenkämper, G., et al. (2007). Incorporation of veterinary antibiotics into crops from manured soil. Landbauforschung Völkenrode, 57(1), 25–32.

    CAS  Google Scholar 

  • Grote, M., Schwake-Anduschus, C., Stevens, H., Michel, R., Betsche, T., & Freitag, M. (2006). Antibiotika-Aufnahme von Nutzpflanzen aus Gülle-gedüngten Böden – Ergebnisse eines Modellversuchs. Journal für Verbraucherschutz und Lebensmittelsicherheit, 1(1), 38–50.

    Article  CAS  Google Scholar 

  • Halling-Sørensen, B., Nors Nielsen, S., Lanzky, P. F., Ingerslev, F., Holten Lützhøft, H. C., & Jørgensen, S. E. (1998). Occurrence, fate and effects of pharmaceutical substances in the environment- a review. Chemosphere, 36(2), 357–393.

    Article  Google Scholar 

  • Havaux, M., Dall’Osto, L., & Bassi, R. (2007). Zeaxanthin has enhanced antioxidant capacity with respect to all other xanthophylls in Arabidopsis leaves and functions independent of binding to PSII antennae. Plant Physiology, 145(4), 1506–1520.

    Article  CAS  Google Scholar 

  • Haydon, M. J., Bell, L. J., & Webb, A. A. R. (2011). Interactions between plant circadian clocks and solute transport. Journal of Experimental Botany, 62(7), 2333–2348.

    Article  CAS  Google Scholar 

  • Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts. Archives of Biochemistry and Biophysics, 125(1), 189–198.

    Article  CAS  Google Scholar 

  • Heberer, T. (2002). Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicology Letters, 131(1–2), 5–17.

    Article  CAS  Google Scholar 

  • Hirsch, R., Ternes, T., Haberer, K., & Kratz, K.-L. (1999). Occurrence of antibiotics in the aquatic environment. Science of The Total Environment, 225(1–2), 109–118.

    Article  CAS  Google Scholar 

  • Johnson, M. P., Pérez-Bueno, M. L., Zia, A., Horton, P., & Ruban, A. V. (2009). The zeaxanthin-independent and zeaxanthin-dependent qE components of nonphotochemical quenching involve common conformational changes within the photosystem II antenna in Arabidopsis. Plant Physiology, 149(2), 1061–1075.

    Article  CAS  Google Scholar 

  • Johnson, M. P., Zia, A., & Ruban, A. V. (2012). Elevated ΔpH restores rapidly reversible photoprotective energy dissipation in Arabidopsis chloroplasts deficient in lutein and xanthophyll cycle activity. Planta, 235(1), 193–204.

    Article  CAS  Google Scholar 

  • Kim, H.-S., Kim, Y.-S., Hahn, K.-W., Joung, H., & Jeon, J.-H. (2009). Reactive oxygen species: regulation of plant growth and development. In J.-P. Jacquot (Ed.), Advances in botanical research, oxidative stress and redox regulation in plants (pp. 25–46). Burlington: Academic.

    Google Scholar 

  • Krause, G. H., & Jahns, P. (2010). Non-photochemical energy dissipation determined by chlorophyll fluorescence quenching: characterization and function. In G. C. Papageorgiou & Govindjee (Eds.), Chlorophyll a fluorescence, a signature of photosynthesis (pp. 463–495). Dordrecht: Springer.

    Google Scholar 

  • Kümmerer, K. (2003). Significance of antibiotics in the environment. The Journal of Antimicrobial Chemotherapy, 52(1), 5–7.

    Article  Google Scholar 

  • Kümmerer, K. (2009). Antibiotics in the aquatic environment—a review—part II. Chemosphere, 75(4), 435–441.

    Article  Google Scholar 

  • Leclercq, M., Mathieu, O., Gomez, E., Casellas, C., Fenet, H., & Hillaire-Buys, D. (2009). Presence and fate of carbamazepine, oxcarbazepine, and seven of their metabolites at wastewater treatment plants. Archives of Environmental Contamination and Toxicology, 56(3), 408–415.

    Article  CAS  Google Scholar 

  • Ledford, H., & Niyogi, K. K. (2005). Singlet oxygen and photo-oxidative stress management in plants and algae. Plant, Cell and Environment, 28(8), 1037–1045.

    Article  CAS  Google Scholar 

  • Liu, W., Au, D. W., Anderson, D. M., Lam, P. K., & Wu, R. S. (2007). Effects of nutrients, salinity, pH and light:dark cycle on the production of reactive oxygen species in the alga Chattonella marina. Journal of Experimental Marine Biology and Ecology, 346(1–2), 76–86.

    Article  CAS  Google Scholar 

  • López, C. V. G., García, M. D. C. C., Fernández, F. G. A., Bustos, C. S., Chisti, Y., & Sevilla, J. M. F. (2010). Protein measurements of microalgal and cyanobacterial biomass. Bioresource Technology, 101(19), 7587–7591.

    Article  Google Scholar 

  • López-Rodas, V., Maneiro, E., & Costas, E. (2006). Adaptation of cyanobacteria and microalgae to anthropogenic pollution. Limnetica, 25(1–2), 403–410.

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A., & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193(1), 265–275.

    CAS  Google Scholar 

  • Lürling, M. (2003). Phenotypic plasticity in the green algae Desmodesmus and Scenedesmus with special reference to the induction of defensive morphology. Annales de Limnologie - International Journal of Limnology, 39(2), 85–101.

    Article  Google Scholar 

  • Melis, A. (1999). Photosystem-II damage and repair cycle in chloroplasts: what modulates the rate of photodamage in vivo? Trends in Plant Science, 4(4), 130–135.

    Article  Google Scholar 

  • Melis, A. (2009). Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antennae to maximize efficiency. Plant Science, 177(4), 272–280.

    Article  CAS  Google Scholar 

  • Miao, X.-S., Yang, J.-J., & Metcalfe, C. D. (2005). Carbamazepine and its metabolites in wastewater and in biosolids in a municipal wastewater treatment plant. Environmental Science & Technology, 39(19), 7469–7475.

    Article  CAS  Google Scholar 

  • Müller, P., Li, X.-P., & Niyogi, K. K. (2001). Non-photochemical quenching: a response to excess light energy. Plant Physiology, 125(4), 1558–1566.

    Article  Google Scholar 

  • Peña-Castro, J. M., Martínez-Jerónimo, F., Esparza-García, F., & Cañizares-Villanueva, R. O. (2004). Phenotypic plasticity in Scenedesmus incrassatulus (Chlorophyceae) in response to heavy metals stress. Chemosphere, 57(11), 1629–1636.

    Article  Google Scholar 

  • Rambeck, B., Schnabel, R., May, T., Jurgens, U., & Villagran, R. (1993). Postmortem concentrations of phenobarbital, carbamazepine, and its metabolite carbamazepine-10,11-epoxide in different regions of the brain and in the serum: analysis of autoptic specimens from 51 epileptic patients. Therapeutic Drug Monitoring, 15(2), 91–98.

    Article  CAS  Google Scholar 

  • Reith, M. E., & Cattolico, R. A. (1985). In vitro chloroplast protein synthesis by the chromophytic alga Olisthodiscus luteus. Biochemistry, 24(10), 2550–2556.

    Article  CAS  Google Scholar 

  • Röbbelen, G. (1957). Untersuchungen An Strahleninduzierten Blattfarbmutanten Von Arabidopsis Thaliana (L) Heynh. Zeitschrift für indukt Abstammungs- und Vererbungslehre, 88(2), 189–252.

    Google Scholar 

  • Rohweder, U. (2003). Arzneimittel in der Umwelt Auswertung der Untersuchungsergebnisse. http://www.blac.de/servlet/is/2146/P-2c.pdf. Accessed 10 June 2015.

    Google Scholar 

  • Schwaiger, J., Mallow, U., & Ferling, H. (2004). Ökotoxikologische Auswirkungen von Arzneimitteln Langzeitwirkungen bei Fischen. http://www.lfu.bayern.de/analytik_stoffe/humanarzneimittel_fische/doc/bericht_arzneimittel_juli_2004.pdf. Accessed 11 November 2013.

    Google Scholar 

  • Semah, F., Gimenez, F., Longer, E., Laplane, D., Thuillier, A., & Baulac, M. (1994). Carbamazepine and its epoxide: an open study of efficacy and side effects after carbamazepine dose increment in refractory partial epilepsy. Therapeutic Drug Monitoring, 16(6), 537–540.

    Article  CAS  Google Scholar 

  • Sherwood, A. R., & Presting, G. G. (2007). Universal primers amplify a 23S rDNA plastid marker in eukaryotic algae and cyanobacteria. Journal of Phycology, 43(3), 605–608.

    Article  Google Scholar 

  • Stahlschmidt-Allner, P., Delov, V., Batzke, M., & von der Gönna, S. (2014). Ökotoxikologische Verfahren als Bewertungshilfe bei Altlastenverfahren : Studie über die grundlegende Anwendbarkeit etablierter aquatischer ökotoxikologischer Testverfahren zur Beurteilung von Grundwasserverunreinigungen bei Altlasten. Wiesbaden: Hessisches Landesamt für Umwelt und Geologie.

    Google Scholar 

  • Swanson, J. M., Sergeant, J. A., Taylor, E., Sonuga-Barke, E. J., Jensen, P. S., & Cantwell, D. P. (1998). Attention-deficit hyperactivity disorder and hyperkinetic disorder. The Lancet, 351(9100), 429–433.

    Article  CAS  Google Scholar 

  • Taylor, J. C., Brauer, S., & Espir, M. L. (1981). Long-term treatment of trigeminal neuralgia with carbamazepine. Postgraduate Medical Journal, 57(663), 16–18.

    Article  CAS  Google Scholar 

  • Ternes, T. A. (1998). Occurrence of drugs in German sewage treatment plants and rivers. Water Research, 32(11), 3245–3260.

    Article  CAS  Google Scholar 

  • Tsiaka, P., Tsarpali, V., Ntaikou, I., Kostopoulou, M. N., Lyberatos, G., & Dailianis, S. (2013). Carbamazepine-mediated pro-oxidant effects on the unicellular marine algal species Dunaliella tertiolecta and the hemocytes of mussel Mytilus galloprovincialis. Ecotoxicology, 22(8), 1208–1220.

    Article  CAS  Google Scholar 

  • Valko, M., Rhodes, C. J., Moncol, J., Izakovic, M., & Mazur, M. (2006). Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-biological Interactions, 160(1), 1–40.

    Article  CAS  Google Scholar 

  • Vera-Estrella, R., Blumwald, E., & Higgins, V. J. (1992). Effect of specific elicitors of cladosporium fulvum on tomato suspension cells 1: evidence for the involvement of active oxygen species. Plant Physiology, 99(3), 1208–1215.

    Article  CAS  Google Scholar 

  • Vranova, E., Inze, D., & van Breusegem, F. (2002). Signal transduction during oxidative stress. Journal of Experimental Botany, 53(372), 1227–1236.

    Article  CAS  Google Scholar 

  • Webb, S. F. (2001). A data-based perspective on the environmental risk assessment of human pharmaceuticals I—collation of available ecotoxicity data. In K. Kümmerer (Ed.), Pharmaceuticals in the environment (pp. 175–201). Berlin, Heidelberg: Springer Berlin Heidelberg.

    Chapter  Google Scholar 

  • Zhang, Y., Geissen, S.-U., & Gal, C. (2008). Carbamazepine and diclofenac: removal in wastewater treatment plants and occurrence in water bodies. Chemosphere, 73(8), 1151–1161.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Silke Braams, Leibniz Universität Hannover, for providing data on lipid peroxidation and Yelena Churakova, Northeastern University, Boston, for proof-reading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra M. Haase.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haase, S.M., Panas, P., Rath, T. et al. Effects of Carbamazepine on Two Microalgae Species Differing in Stress Resistance. Water Air Soil Pollut 226, 328 (2015). https://doi.org/10.1007/s11270-015-2562-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2562-8

Keywords