Skip to main content
Log in

Influence of Degradation Behavior of Coexisting Chlorobenzene Congeners Pentachlorobenzene, 1,2,4,5-Tetrachlorobenzene, and 1,2,4-Trichlorobenzene on the Anaerobic Reductive Dechlorination of Hexachlorobenzene in Dye Plant Contaminated Soil

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The degradation of hexachlorobenzene (HCB) is of great concern and attracts considerable scientific and regulatory interests, due to the high toxicity, great bioaccumulation, and persistence of HCB in the environment. However, in the real HCB-contaminated soil, the effect of coexisting chlorobenzene congeners on the degradation capacity of HCB is poorly known. In this work, the anaerobic degradation behaviors of three coexisting chlorobenzene congeners pentachlorobenzene (PeCB), 1,2,4,5-tetrachlorobenzene (1,2,4,5-TeCB), and 1,2,4-trichlorobenzene (1,2,4-TCB) and the influence of initial pH and reaction temperature on the dechlorination of HCB in HCB-contaminated soil from the dye plant were studied. The amount and extent of accumulated coexisting chlorobenzenes was analyzed under different environmental conditions. The results indicate that the concentrations of three coexisting chlorobenzene congeners change in the form of wave. The anaerobic degradation activity of HCB is reduced due to the feedback inhibition caused by accumulation of coexisting chlorobenzene congeners, and the feedback inhibition varies from environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adrian, L., & Görisch, H. (2002). Microbial transformation of chlorinated benzenes under anaerobic conditions. Research in Microbiology, 153, 131–137.

    Article  CAS  Google Scholar 

  • Bailey, R. E. (2001). Global hexachlorobenzene emissions. Chemosphere, 43, 167–182.

    Article  CAS  Google Scholar 

  • Barber, J. L., Sweetman, A. J., Wijk, D. V., & Jones, K. C. (2005). Hexachlorobenzene in the global environment: emissions, levels, distribution, trends and processes. Science of the Total Environment, 349, 1–44.

    Article  CAS  Google Scholar 

  • Brahushi, F., Dörfler, U., Schroll, R., & Munch, J. C. (2004). Stimulation of reductive dechlorination of hexachlorobenzene in soil by inducing the native microbial activity. Chemosphere, 55, 1477–1484.

    Article  CAS  Google Scholar 

  • Chang, B. V., Chen, Y. M., Yuan, S. Y., & Wang, Y. S. (1997). Reductive dechlorination of hexachlorobenzene by an anaerobic mixed culture. Water, air, and soil pollution, 100, 25–32.

    Article  CAS  Google Scholar 

  • Chen, I. M., Wanitchapichat, W., Jirakittayakorn, T., Sanohniti, S., Sudjarid, W., Wantawin, C., Voranisarakul, J., & Anotai, J. (2010). Hexachlorobenzene dechlorination by indigenous sediment microorganisms. Journal of Hazardous Materials, 177, 244–250.

    Article  CAS  Google Scholar 

  • Fathepure, B. Z., Tiedje, J. M., & Boyd, S. A. (1988). Reductive dechlorination of hexachlorobenzene to tri- and dichlorobenzene in anaerobic sewage sludge. Applied Environmental Microbol, 54, 327–330.

    CAS  Google Scholar 

  • Hippelein, M., & McLachlan, M. S. (1998). Soil/air partitioning of semivolatile organic compounds: 1. Method development and influence of physical-chemical properties. Environmental Science and Technology, 32, 310–316.

    Article  CAS  Google Scholar 

  • Hirano, T., Ishida, T., Oh, K., & Sudo, R. (2007). Biodegradation of chlordane and hexachlorobenzenes in river sediment. Chemosphere, 67, 428–434.

    Article  CAS  Google Scholar 

  • Huang, H., Jiang, J. G., Xiao, Y., Chen, X. J., & Liu, S. (2014). A novel and efficient method for dechlorination of hexachlorobenzene using a sodium carbonate/glycerol system. Chemical Engineering Journal, 256, 205–214.

    Article  Google Scholar 

  • Liu, C. Y., Jiang, X., Wang, F., Yang, X. L., & Wang, T. (2010a). Hexachlorobenzene dechlorination as affected by nitrogen application in acidic paddy soil. Journal of Hazardous Materials, 179, 709–714.

    Article  CAS  Google Scholar 

  • Liu, C. Y., Jiang, X., Yang, X. L., & Song, Y. (2010b). Hexachlorobenzene dechlorination as affected by organic fertilizer and urea applications in two rice planted paddy soils in a pot experiment. Sci Total Environment, 408, 958–964.

    Article  CAS  Google Scholar 

  • Matheus, D. R., Bononi, V. L. R., & Machado, K. M. G. (2000). Biodegradation of hexachlorobenzene by basidiomycetes in soil contaminated with industrial residues. World Journal Microbiol Biotechnol, 16, 415–421.

    Article  CAS  Google Scholar 

  • Meijer, S. N., Ockenden, W. A., Sweetman, A., Breivik, K., Grimalt, J. O., & Jones, K. C. (2003). Global distribution and budget of PCBs and HCB in background surface soils: implications for sources and environmental processes. Environmental Science and Technology, 37, 667–672.

    Article  CAS  Google Scholar 

  • Oonnittan, A., Shrestha, R. A., & Mika, S. (2009a). Removal of hexachlorobenzene from soil by electrokinetically enhanced chemical oxidation. Journal of Hazardous Materials, 162, 989–993.

    Article  CAS  Google Scholar 

  • Oonnittan, A., Shrestha, R. A., & Sillanpää, M. (2009b). Effect of cyclodextrin on the remediation of hexachlorobenzene in soil by electrokinetic Fenton process. Separation and Purification Technology, 64, 314–320.

    Article  CAS  Google Scholar 

  • Rousk, J., Brookes, P. C., & Bååth, E. (2009). Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Applied and Environmental Microbiology, 75, 1589–1596.

    Article  CAS  Google Scholar 

  • Rousk, J., Brookes, P. C., & Bååth, E. (2010). Investigating the mechanisms for the opposing pH relationships of fungal and bacterial growth in soil. Soil Biology and Biochemistry, 42, 926–934.

    Article  CAS  Google Scholar 

  • Shih, Y. H., Hsu, C. Y., & Su, Y. F. (2011). Reduction of hexachlorobenzene by nanoscale zero-valent iron: kinetics, pH effect, and degradation mechanism. Separation and Purification Technology, 76, 268–274.

    Article  CAS  Google Scholar 

  • Sweetman, A. J., Valle, M. D., Prevedouros, K., & Jones, K. C. (2005). The role of soil organic carbon in the global cycling of persistent organic pollutants (POPs): interpreting and modelling field data. Chemosphere, 60, 959–972.

    Article  CAS  Google Scholar 

  • Takaqi, K., Iwasaki, A., Kamei, I., Satsuma, K., Yoshioka, Y., & Harada, N. (2009). Aerobic mineralization of hexachlorobenzene by newly isolated pentachloronitrobenzene-degrading Nocardioides sp. strain PD653. Appl. Environ Microbiology, 75, 4452–4458.

    Article  Google Scholar 

  • USEPA. (2007). Method 8270D: semivolatile organic compounds by gas chromatography/mass spectrometry (GC/MS). Washington, DC: US Environmental Protection Agency.

    Google Scholar 

  • Wu, Q. Z., Milliken, C. E., Meier, G. P., Watts, J. E. M., Sowers, K. R., & May, H. D. (2002). Dechlorination of chlorobenzenes by a culture containing bacterium DF-1, a PCB dechlorinating microorganism. Environmental Science and Technology, 36, 3290–3294.

    Article  CAS  Google Scholar 

  • Yuan, S. Y., Su, C. J., & Chang, B. V. (1999). Microbial dechlorination of hexachlorobenzene in anaerobic sewage sludge. Chemosphere, 38, 1015–1023.

    Article  CAS  Google Scholar 

  • Yuan, S. H., Tian, M., & Lu, X. H. (2006a). Electrokinetic movement of hexachlorobenzene in clayed soils enhanced by Tween 80 and β-cyclodextrin. Journal of Hazardous Materials B, 137, 1218–1225.

    Article  CAS  Google Scholar 

  • Yuan, S. H., Tian, M., & Lu, X. H. (2006b). Microwave remediation of soil contaminated with hexachlorobenzene. Journal of Hazardous Materials B, 137, 878–885.

    Article  CAS  Google Scholar 

  • Zhou, D. Q. (2002). Text book of microbiology. Beijing: Higher Education Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, L., Wang, Q., Liu, H. et al. Influence of Degradation Behavior of Coexisting Chlorobenzene Congeners Pentachlorobenzene, 1,2,4,5-Tetrachlorobenzene, and 1,2,4-Trichlorobenzene on the Anaerobic Reductive Dechlorination of Hexachlorobenzene in Dye Plant Contaminated Soil. Water Air Soil Pollut 226, 299 (2015). https://doi.org/10.1007/s11270-015-2559-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2559-3

Keywords

Navigation