Skip to main content

Advertisement

Log in

A Review on Phytoremediation of Crude Oil Spills

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Changes in crude oil production and distribution have increased the incidence of oil spills throughout the world. Oil spills often cause destructive effects on aquatic and land ecosystems. The oil spill cleanup and recovery techniques are challenging and usually involve complex mechanical, chemical, and biological methods. Usually, mechanical removal of free oil is utilized as an effective strategy for cleanup in aquatic and terrestrial environments; however, they are expensive and need specialist personnel and equipment. The other commonly used method is the application of chemical materials such as dispersants, cleaners, demulsifiers, biosurfactants, and soil oxidizers. Nevertheless, these reagents can have potential harmful environmental impacts, which may limit their application. As an alternative, bioremediation can offer reduced environment risk; however, the limitations of microbial activity in the soil can make this option unsuitable. One area of bioremediation is phytoremediation, which offers potential for restoring large areas of contaminated ground. Plants are able to remove pollutants through processes such as biodegradation, phytovolatilization, accumulation, and metabolic transformation. This review presents the fate of crude oil spills in aquatic and land ecosystems and their environmental effects. Furthermore, the paper focuses on crude oil phytoremediation and its applications in polluted ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdelwahab, O. (2014). Assessment of raw luffa as a natural hollow oleophilic fibrous sorbent for oil spill cleanup. Alexandria Engineering Journal, 53(1), 213–218.

    Google Scholar 

  • Agamuthu, P., Abioye, O. P., & Aziz, A. A. (2010). Phytoremediation of soil contaminated with used lubricating oil using Jatropha curcas. Journal of hazardous materials, 179(1), 891–894.

    CAS  Google Scholar 

  • Agbogidi, O. M., & Bamidele, J. F. (2009). Suitability of Pistia stratiotes Linn. and Spirodela polyrrhiza Trev. for the removal of pollutants in oil polluted water bodies. Discovery and Innovation, 19(2).

  • Akapo, A. A. R., Omidiji, S. O., & Otitoloju, A. A. (2011). Morphological and anatomical effects of crude oil on Pistia stratiotes. The Environmentalist, 31(3), 288–298.

    Google Scholar 

  • Alarcón, A., Davies, F. T., Jr., Autenrieth, R. L., & Zuberer, D. A. (2008). Arbuscular mycorrhiza and petroleum-degrading microorganisms enhance phytoremediation of petroleum-contaminated soil. International Journal of Phytoremediation, 10(4), 251–263.

    Google Scholar 

  • Ali, N., Sorkhoh, N., Salamah, S., Eliyas, M., & Radwan, S. (2012). The potential of epiphytic hydrocarbon-utilizing bacteria on legume leaves for attenuation of atmospheric hydrocarbon pollutants. Journal of Environmental Management, 93(1), 113–120.

    CAS  Google Scholar 

  • Alkorta, I., & Garbisu, C. (2001). Phytoremediation of organic contaminants in soils. Bioresource Technology, 79(3), 273–276.

    CAS  Google Scholar 

  • Al-Majed, A. A., Adebayo, A. R., & Hossain, M. E. (2012). A sustainable approach to controlling oil spills. Journal of Environmental Management, 113, 213–227.

    Google Scholar 

  • Andersen, R. G., Booth, E. C., Marr, L. C., Widdowson, M. A., & Novak, J. T. (2008). Volatilization and biodegradation of naphthalene in the vadose zone impacted by phytoremediation. Environmental Science & Technology, 42(7), 2575–2581.

    CAS  Google Scholar 

  • Andrew James, C., Xin, G., Doty, S. L., Muiznieks, I., Newman, L., & Strand, S. E. (2009). A mass balance study of the phytoremediation of perchloroethylene-contaminated groundwater. Environmental Pollution, 157(8), 2564–2569.

    CAS  Google Scholar 

  • Ansari, A. A., Gill, S. S., Gill, R., Lanza, G. R., & Newman, L. (Eds.). (2014). Phytoremediation: management of environmental contaminants (vol. 1). Springer.

  • Asadpour, R., Sapari, N. B., Isa, M. H., & Orji, K. U. (2014). Enhancing the hydrophobicity of mangrove bark by esterification for oil adsorption. Water Science & Technology, 70(7), 1220–1228.

    CAS  Google Scholar 

  • Atagana, H. I. (2011). Bioremediation of co-contamination of crude oil and heavy metals in soil by phytoremediation using Chromolaena odorata (L) King & HE Robinson. Water, Air, & Soil Pollution, 215(1–4), 261–271.

    CAS  Google Scholar 

  • Atlas, R. M. (1995). Petroleum biodegradation and oil spill bioremediation. Marine Pollution Bulletin, 31(4), 178–182.

    CAS  Google Scholar 

  • Atlas, R. M., & Hazen, T. C. (2011). Oil biodegradation and bioremediation: a tale of the two worst spills in US history. Environmental Science & Technology, 45(16), 6709–6715.

    CAS  Google Scholar 

  • Ayotamuno, J. M., Kogbara, R. B., & Egwuenum, P. N. (2006). Comparison of corn and elephant grass in the phytoremediation of a petroleum-hydrocarbon-contaminated agricultural soil in Port Harcourt, Nigeria. Journal of Food Agriculture and Environment, 4(3/4), 218.

    CAS  Google Scholar 

  • Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S., & Vivanco, J. M. (2006). The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology, 57, 233–266.

    CAS  Google Scholar 

  • Balba, M. T., Al-Awadhi, N., & Al-Daher, R. (1998). Bioremediation of oil-contaminated soil: microbiological methods for feasibility assessment and field evaluation. Journal of Microbiological Methods, 32(2), 155–164.

    CAS  Google Scholar 

  • Basumatary, B., Saikia, R., & Bordoloi, S. (2012a). Phytoremediation of crude oil contaminated soil using nut grass, Cyperus rotundus. Journal of Environmental Biology, 33(5).

  • Basumatary, B., Bordoloi, S., & Sarma, H. P. (2012b). Crude oil-contaminated soil phytoremediation by using Cyperus brevifolius (Rottb.) Hassk. Water, Air, & Soil Pollution, 223(6), 3373–3383.

    CAS  Google Scholar 

  • Baussant, T., Sanni, S., Jonsson, G., Skadsheim, A., & Borseth, J. F. (2001). Bioaccumulation of polycyclic aromatic compounds: 1. Bioconcentration in two marine species and in semipermeable membrane devices during chronic exposure to dispersed crude oil. Environmental Toxicology and Chemistry, 20(6), 1175–1184.

    CAS  Google Scholar 

  • Bayat, A., Aghamiri, S. F., Moheb, A., & Vakili‐Nezhaad, G. R. (2005). Oil spill cleanup from sea water by sorbent materials. Chemical Engineering & Technology, 28(12), 1525–1528.

    CAS  Google Scholar 

  • Bento, R. A., Saggin-Júnior, O. J., Pitard, R. M., Straliotto, R., da Silva, E. M. R., de Lucena Tavares, S. R., Frederico, H. T. G., Luiz, F. M., & Volpon, A. G. T. (2012). Selection of leguminous trees associated with symbiont microorganisms for phytoremediation of petroleum-contaminated soil. Water, Air, & Soil Pollution, 223(9), 5659–5671.

    CAS  Google Scholar 

  • Berndes, G. (2013). Bioenergy and water: challenges and opportunities. Bioenergy and Water, 49.

  • Bhatia, M., & Goyal, D. (2014). Analyzing remediation potential of wastewater through wetland plants: a review. Environmental Progress & Sustainable Energy, 33(1), 9–27.

    CAS  Google Scholar 

  • Boonsaner, M., Borrirukwisitsak, S., & Boonsaner, A. (2011). Phytoremediation of BTEX contaminated soil by Canna generalis. Ecotoxicology and Environmental Safety, 74(6), 1700–1707.

    CAS  Google Scholar 

  • Boopathy, R. (2000). Factors limiting bioremediation technologies. Bioresource Technology, 74(1), 63–67.

    CAS  Google Scholar 

  • Buist, I., Potter, S., Nedwed, T., & Mullin, J. (2011). Herding surfactants to contract and thicken oil spills in pack ice for in situ burning. Cold Regions Science and Technology, 67(1), 3–23.

    Google Scholar 

  • Burken, J. G., Ross, C., Harrison, L. M., Marsh, A., Zetterstrom, L., & Gibbons, J. S. (2001). Benzene toxicity and removal in laboratory phytoremediation studies. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 5(3), 161–171.

    CAS  Google Scholar 

  • Cai, Z., Zhou, Q., Peng, S., & Li, K. (2010). Promoted biodegradation and microbiological effects of petroleum hydrocarbons by Impatiens balsamina L. with strong endurance. Journal of Hazardous Materials, 183(1), 731–737.

    CAS  Google Scholar 

  • Calvo, C., Manzanera, M., Silva-Castro, G. A., Uad, I., & González-López, J. (2009). Application of bioemulsifiers in soil oil bioremediation processes. Future prospects. Science of the Total Environment, 407(12), 3634–3640.

    CAS  Google Scholar 

  • Camacho, M., Luzardo, O. P., Boada, L. D., López Jurado, L. F., Medina, M., Zumbado, M., & Orós, J. (2013). Potential adverse health effects of persistent organic pollutants on sea turtles: evidences from a cross-sectional study on Cape Verde loggerhead sea turtles. Science of the Total Environment, 458, 283–289.

    Google Scholar 

  • Cartmill, A. D., Cartmill, D. L., & Alarcón, A. (2014). Controlled release fertilizer increased phytoremediation of petroleum-contaminated sandy soil. International Journal of Phytoremediation, 16(3), 285–301.

    CAS  Google Scholar 

  • Ceylan, D., Dogu, S., Karacik, B., Yakan, S. D., Okay, O. S., & Okay, O. (2009). Evaluation of butyl rubber as sorbent material for the removal of oil and polycyclic aromatic hydrocarbons from seawater. Environmental Science & Technology, 43(10), 3846–3852.

    CAS  Google Scholar 

  • Chase, D. A., Edwards, D. S., Qin, G., Wages, M. R., Willming, M. M., Anderson, T. A., & Maul, J. D. (2013). Bioaccumulation of petroleum hydrocarbons in fiddler crabs (Uca minax) exposed to weathered MC-252 crude oil alone and in mixture with an oil dispersant. Science of the Total Environment, 444, 121–127.

    CAS  Google Scholar 

  • Chatterjee, S., Chattopadhyay, P., Roy, S., & Sen, S. K. (2008). Bioremediation: a tool for cleaning polluted environments. Journal of Applied Biosciences, 11, 594–601.

    Google Scholar 

  • Choi, H. M., & Cloud, R. M. (1992). Natural sorbents in oil spill cleanup. Environmental Science & Technology, 26(4), 772–776.

    CAS  Google Scholar 

  • Chuluun, B., Shah, S. H., & Rhee, J. S. (2014). Bioaugmented phytoremediation: a strategy for reclamation of diesel oil-contaminated soils. International Journal of Agriculture and Biology, 16, 624–628.

    Google Scholar 

  • Cojocaru, C., Macoveanu, M., & Cretescu, I. (2011). Peat-based sorbents for the removal of oil spills from water surface: application of artificial neural network modeling. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 384(1), 675–684.

    CAS  Google Scholar 

  • Cook, R. L., & Hesterberg, D. (2013). Comparison of trees and grasses for rhizoremediation of petroleum hydrocarbons. International journal of phytoremediation, 15(9), 844–860.

    CAS  Google Scholar 

  • Compernolle, T., Van Passel, S., Weyens, N., Vangronsveld, J., Lebbe, L., & Thewys, T. (2012). Groundwater remediation and the cost effectiveness of phytoremediation. International journal of phytoremediation, 14(9), 861–877.

    CAS  Google Scholar 

  • Dave, D., & Ghaly, A. E. (2011). Remediation technologies for marine oil spills: a critical review and comparative analysis. American Journal of Environmental Sciences, 7(5), 423.

    CAS  Google Scholar 

  • Díaz, E. (2010). Bacterial degradation of aromatic pollutants: a paradigm of metabolic versatility. International Microbiology, 7(3), 173–180.

    Google Scholar 

  • Dosnon-Olette, R., Couderchet, M., & Eullaffroy, P. (2009). Phytoremediation of fungicides by aquatic macrophytes: toxicity and removal rate. Ecotoxicology and Environmental Safety, 72(8), 2096–2101.

    CAS  Google Scholar 

  • Dowty, R. A., Shaffer, G. P., Hester, M. W., Childers, G. W., Campo, F. M., & Greene, M. C. (2001). Phytoremediation of small-scale oil spills in fresh marsh environments: a mesocosm simulation. Marine Environmental Research, 52(3), 195–211.

    CAS  Google Scholar 

  • Dutta, T. K., & Harayama, S. (2001). Biodegradation ofn-alkylcycloalkanes and n-alkylbenzenes via new pathways in Alcanivorax sp. strain MBIC 4326. Applied and Environmental Microbiology, 67(4), 1970–1974.

    CAS  Google Scholar 

  • Ebuehi, O. A. T., Abibo, I. B., Shekwolo, P. D., Sigismund, K. I., Adoki, A., & Okoro, I. C. (2005). Remediation of crude oil contaminated soil by enhanced natural attenuation technique. Journal of Applied Sciences & Environmental Management, 9, 103–106.

    Google Scholar 

  • Erdogan, E. E., & Karaca, A. (2011). Bioremediation of crude oil polluted soils. Asian Journal of Biotechnology, 3, 206–213.

    Google Scholar 

  • Escalante-Espinosa, E., Gallegos-Martínez, M. E., Favela-Torres, E., & Gutiérrez-Rojas, M. (2005). Improvement of the hydrocarbon phytoremediation rate by Cyperus laxus Lam. inoculated with a microbial consortium in a model system. Chemosphere, 59(3), 405–413.

    CAS  Google Scholar 

  • Esler, D., Schmutz, A., Jarvis, L., & Mulcahy, D. M. (2000). Winter survival of adult female harlequin ducks in relation to history of contamination by the Exxon Valdez oil spill. 28.

  • Evans, D. D., Mulholland, G. W., Baum, H. R., Walton, W. D., & McGrattan, K. B. (2001). In situ burning of oil spills. Journal of Research-National Institute of Standards and Technology, 106(1), 231–278.

    CAS  Google Scholar 

  • Favas, P. J., Pratas, J., & Prasad, M. N. V. (2012). Accumulation of arsenic by aquatic plants in large-scale field conditions: opportunities for phytoremediation and bioindication. Science of the Total Environment, 433, 390–397.

    CAS  Google Scholar 

  • Favas, P. J., Pratas, J., Varun, M., D'Souza, R., & Paul, M. S. (2014). Accumulation of uranium by aquatic plants in field conditions: prospects for phytoremediation. Science of the Total Environment, 470, 993–1002.

    Google Scholar 

  • Farmer, J., Ladd, D., & Williams, S. (2006). Fate and transport of petroleum hydrocarbons in soil and ground water at big South Fork National River and Recreation Area, Tennessee and Kentucky, 2002–2003.

  • Fernández-Álvarez, P., Vila, J., Garrido-Fernández, J. M., Grifoll, M., & Lema, J. M. (2006). Trials of bioremediation on a beach affected by the heavy oil spill of the Prestige. Journal of Hazardous Materials, 137(3), 1523–1531.

    Google Scholar 

  • Ferro, A. M., Adham, T., Berra, B., & Tsao, D. (2013). Performance of deep-rooted phreatophytic trees at a site containing total petroleum hydrocarbons. International Journal of Phytoremediation, 15(3), 232–244.

    CAS  Google Scholar 

  • Fingas, M. (2012). The basics of oil spill cleanup. CRC Press.

  • Fletcher, J. S., & Hegde, R. S. (1995). Release of phenols by perennial plant roots and their potential importance in bioremediation. Chemosphere, 31(4), 3009–3016.

    CAS  Google Scholar 

  • Franco, C. A., Cortés, F. B., & Nassar, N. N. (2014). Adsorptive removal of oil spill from oil-in-fresh water emulsions by hydrophobic alumina nanoparticles functionalized with petroleum vacuum residue. Journal of Colloid and Interface Science, 425, 168–177.

    CAS  Google Scholar 

  • Garbisu, C., & Alkorta, I. (2001). Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresource Technology, 77(3), 229–236.

    CAS  Google Scholar 

  • Ghazali, F. M., Rahman, R. N. Z. A., Salleh, A. B., & Basri, M. (2004). Biodegradation of hydrocarbons in soil by microbial consortium. International Biodeterioration & Biodegradation, 54(1), 61–67.

    CAS  Google Scholar 

  • George-Ares, A., & Clark, J. R. (2000). Aquatic toxicity of two Corexit® dispersants. Chemosphere, 40(8), 897–906.

    CAS  Google Scholar 

  • Gerhardt, K. E., Huang, X. D., Glick, B. R., & Greenberg, B. M. (2009). Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Science, 176(1), 20–30.

    CAS  Google Scholar 

  • Ghannam, M. T., & Chaalal, O. (2003). Oil spill cleanup using vacuum technique. Fuel, 82(7), 789–797.

    CAS  Google Scholar 

  • Gleba, D., Borisjuk, N. V., Borisjuk, L. G., Kneer, R., Poulev, A., Skarzhinskaya, M., & Raskin, I. (1999). Use of plant roots for phytoremediation and molecular farming. Proceedings of the National Academy of Sciences, 96(11), 5973–5977.

    CAS  Google Scholar 

  • Golyshin, P. N., Dos Santos, V. A. M., Kaiser, O., Ferrer, M., Sabirova, Y. S., Lünsdorf, H., … & Timmis, K. N. (2003). Genome sequence completed of Alcanivorax borkumensis, a hydrocarbon-degrading bacterium that plays a global role in oil removal from marine systems. Journal of biotechnology, 106(2), 215–220.

  • Gothwal, R. K., Nigam, V. K., Mohan, M. K., Sasmal, D., & Ghosh, P. (2008). Screening of nitrogen fixers from rhizospheric bacterial isolates associated with important desert plants. Applied Ecology and Environmental Research, 6(2), 101–109.

    Google Scholar 

  • Grayston, S. J., Wang, S., Campbell, C. D., & Edwards, A. C. (1998). Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biology and Biochemistry, 30(3), 369–378.

    CAS  Google Scholar 

  • Ha, N. T. H., Sakakibara, M., & Sano, S. (2011). Accumulation of Indium and other heavy metals by Eleocharis acicularis: an option for phytoremediation and phytomining. Bioresource Technology, 102(3), 2228–2234.

    Google Scholar 

  • Haritash, A. K., & Kaushik, C. P. (2009). Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. Journal of Hazardous Materials, 169(1), 1–15.

    CAS  Google Scholar 

  • Huesemann, M. H., Hausmann, T. S., Fortman, T. J., Thom, R. M., & Cullinan, V. (2009). In situ phytoremediation of PAH-and PCB-contaminated marine sediments with eelgrass (Zostera marina). Ecological Engineering, 35(10), 1395–1404.

    Google Scholar 

  • Ibrahim, S. I., Abdel Lateef, M. F., Khalifa, H. M. S., & Abdel Monem, A. E. (2013). Phytoremediation of atrazine-contaminated soil using Zea mays (maize). Annals of Agricultural Sciences, 58(1), 69–75.

    Google Scholar 

  • Ishak, S., & Malakahmad, A. (2013). Optimization of Fenton process for refinery wastewater biodegradability augmentation. Korean Journal of Chemical Engineering, 30(5), 1083–1090.

    CAS  Google Scholar 

  • Issoufi, I., Rhykerd, R. L., & Smiciklas, K. D. (2006). Seedling growth of agronomic crops in crude oil contaminated soil. Journal of Agronomy and Crop Science, 192(4), 310–317.

    Google Scholar 

  • ITRC (2009). Phytotechnology technical and regulatory guidance and decision trees, revised. ALT-3. Washington, D.C.: Interstate Technology & Regulatory Council, Alternative Landfill Technologies Team. www.itrcweb.org.

  • Jagadevan, S., & Mukherji, S. (2004). Successful in situ oil bioremediation programmes—key parameters. Indian Journal of Biotechnology, 3(4), 495–501.

    CAS  Google Scholar 

  • Jewett, S. C., Dean, T. A., Woodin, B. R., Hoberg, M. K., & Stegeman, J. J. (2002). Exposure to hydrocarbons 10 years after the Exxon Valdez oil spill: evidence from cytochrome P4501A expression and biliary FACs in nearshore demersal fishes. Marine Environmental Research, 54(1), 21–48.

    CAS  Google Scholar 

  • Joner, E. J., & Leyval, C. (2003). Phytoremediation of organic pollutants using mycorrhizal plants: a new aspect of rhizosphere interactions. Agronomie-Sciences des Productions Vegetales et de l'Environnement, 23(5–6), 495–502.

    CAS  Google Scholar 

  • Jordahl, J. L., Foster, L., Schnoor, J. L., & Alvarez, P. J. (1997). Effect of hybrid poplar trees on microbial populations important to hazardous waste bioremediation. Environmental Toxicology and Chemistry, 16(6), 1318–1321.

    CAS  Google Scholar 

  • Joutey, N. T., Bahafid, W., Sayel, H., & El Ghachtouli, N. (2013). Biodegradation: involved microorganisms and genetically engineered microorganisms. Biodegradation-life of science. InTech, Rijeka, 289–320.

  • Kabra, A. N., Khandare, R. V., Waghmode, T. R., & Govindwar, S. P. (2012). Phytoremediation of textile effluent and mixture of structurally different dyes by Glandularia pulchella (Sweet) Tronc. Chemosphere, 87(3), 265–272.

    CAS  Google Scholar 

  • Kang, S. W., Kim, Y. B., Shin, J. D., & Kim, E. K. (2010). Enhanced biodegradation of hydrocarbons in soil by microbial biosurfactant, sophorolipid. Applied Biochemistry and Biotechnology, 160(3), 780–790.

    CAS  Google Scholar 

  • Kamath, R., Rentz, J. A., Schnoor, J. L., & Alvarez, P. J. J. (2004). Phytoremediation of hydrocarbon-contaminated soils: principles and applications. Studies in surface science and catalysis, 151, 447–478.

    CAS  Google Scholar 

  • Khan, A. G. (2006). Mycorrhizoremediation—an enhanced form of phytoremediation. Journal of Zhejiang University Science, 7(7), 503–514.

    Google Scholar 

  • Khan, S., Afzal, M., Iqbal, S., & Khan, Q. M. (2013). Plant–bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere, 90(4), 1317–1332.

    CAS  Google Scholar 

  • Kingston, P. F. (2002). Long-term environmental impact of oil spills. Spill Science & Technology Bulletin, 7(1), 53–61.

    CAS  Google Scholar 

  • Kirkpatrick, W. D., White, P. M., Jr., Wolf, D. C., Thoma, G. J., & Reynolds, C. M. (2006). Selecting plants and nitrogen rates to vegetate crude-oil-contaminated soil. International Journal of Phytoremediation, 8(4), 285–297.

    CAS  Google Scholar 

  • Konnerup, D., Koottatep, T., & Brix, H. (2009). Treatment of domestic wastewater in tropical, subsurface flow constructed wetlands planted with Canna and Heliconia. Ecological Engineering, 35(2), 248–257.

    Google Scholar 

  • Kuiper, I., Lagendijk, E. L., Bloemberg, G. V., & Lugtenberg, B. J. (2004). Rhizoremediation: a beneficial plant-microbe interaction. Molecular Plant-Microbe Interactions, 17(1), 6–15.

    CAS  Google Scholar 

  • Kuo, H. C., Juang, D. F., Yang, L., Kuo, W. C., & Wu, Y. M. (2013). Phytoremediation of soil contaminated by heavy oil with plants colonized by mycorrhizal fungi. International Journal of Environmental Science and Technology, 1–8.

  • Kuzovkina, Y. A., & Quigley, M. F. (2005). Willows beyond wetlands: uses of Salix L. species for environmental projects. Water, Air, and Soil Pollution, 162(1–4), 183–204.

    CAS  Google Scholar 

  • Leahy, J. G., & Colwell, R. R. (1990). Microbial degradation of hydrocarbons in the environment. Microbiological Reviews, 54(3), 305–315.

    CAS  Google Scholar 

  • Lee, P. H., Ong, S. K., Golchin, J., & Nelson, G. L. (2001). Use of solvents to enhance PAH biodegradation of coal tar. Water Research, 35(16), 3941–3949.

    CAS  Google Scholar 

  • Lee, R. F., & Page, D. S. (1997). Petroleum hydrocarbons and their effects in subtidal regions after major oil spills. Marine Pollution Bulletin, 34(11), 928–940.

    CAS  Google Scholar 

  • Lee, S. H., Lee, W. S., Lee, C. H., & Kim, J. G. (2008). Degradation of phenanthrene and pyrene in rhizosphere of grasses and legumes. Journal of Hazardous Materials, 153(1), 892–898.

    CAS  Google Scholar 

  • Leigh, M. B., Fletcher, J. S., Fu, X., & Schmitz, F. J. (2002). Root turnover: an important source of microbial substrates in rhizosphere remediation of recalcitrant contaminants. Environmental Science & Technology, 36(7), 1579–1583.

    CAS  Google Scholar 

  • León, V. M., Moreno-González, R., González, E., Martínez, F., García, V., & Campillo, J. A. (2013). Interspecific comparison of polycyclic aromatic hydrocarbons and persistent organochlorines bioaccumulation in bivalves from a Mediterranean coastal lagoon. Science of the Total Environment, 463, 975–987.

    Google Scholar 

  • Li, Z., Xiao, H., Cheng, S., Zhang, L., Xie, X., & Wu, Z. (2014). A comparison on the phytoremediation ability of triazophos by different macrophytes. Journal of Environmental Sciences, 26(2), 315–322.

    CAS  Google Scholar 

  • Liang, Y., Zhang, X., Dai, D., & Li, G. (2009). Porous biocarrier-enhanced biodegradation of crude oil contaminated soil. International Biodeterioration & Biodegradation, 63(1), 80–87.

    CAS  Google Scholar 

  • Lin, Q., & Mendelssohn, I. A. (1998). The combined effects of phytoremediation and biostimulation in enhancing habitat restoration and oil degradation of petroleum contaminated wetlands. Ecological Engineering, 10(3), 263–274.

    Google Scholar 

  • Lin, Q., & Mendelssohn, I. A. (2009). Potential of restoration and phytoremediation with Juncus roemerianus for diesel-contaminated coastal wetlands. Ecological Engineering, 35(1), 85–91.

    Google Scholar 

  • Lin, X., Li, X., Sun, T., Li, P., Zhou, Q., Sun, L., & Hu, X. (2009). Changes in microbial populations and enzyme activities during the bioremediation of oil-contaminated soil. Bulletin of Environmental Contamination and Toxicology, 83(4), 542–547.

    CAS  Google Scholar 

  • Lotfy, S. M., & Mostafa, A. Z. (2013). Phytoremediation of contaminated soil with cobalt and chromium. Journal of Geochemical Exploration, 144, 367–373.

    Google Scholar 

  • Lu, M., Zhang, Z., Sun, S., Wei, X., Wang, Q., & Su, Y. (2010). The use of goosegrass (Eleusine indica) to remediate soil contaminated with petroleum. Water, Air, & Soil Pollution, 209(1–4), 181–189.

    CAS  Google Scholar 

  • Lucas, Z., & MacGregor, C. (2006). Characterization and source of oil contamination on the beaches and seabird corpses, Sable Island, Nova Scotia, 1996–2005. Marine Pollution Bulletin, 52(7), 778–789.

    CAS  Google Scholar 

  • Luers, F., & Ten Hulscher, T. E. (1996). Temperature effect on the partitioning of polycyclic aromatic hydrocarbons between natural organic carbon and water. Chemosphere, 33(4), 643–657.

    CAS  Google Scholar 

  • Lung, W. S., Martin, J. L., & McCutcheon, S. C. (1993). Eutrophication analysis of embayments in Prince William sound, Alaska. Journal of Environmental Engineering, 119(5), 811–824.

    CAS  Google Scholar 

  • Machate, T., Noll, H., Behrens, H., & Kettrup, A. (1997). Degradation of phenanthrene and hydraulic characteristics in a constructed wetland. Water Research, 31(3), 554–560.

    CAS  Google Scholar 

  • Makkar, R. S., & Rockne, K. J. (2003). Comparison of synthetic surfactants and biosurfactants in enhancing biodegradation of polycyclic aromatic hydrocarbons. Environmental Toxicology and Chemistry, 22(10), 2280–2292.

    CAS  Google Scholar 

  • Malakahmad, A., & Jaafar, N. (2013). Oil sludge contaminated soil bioremediation via composting using refinery treatment plant sludge and different bulking agents. In Business Engineering and Industrial Applications Colloquium (BEIAC), 2013 I.E. (pp. 832–835). IEEE.

  • Mary Agbogidi, O., Dickens Dolor, E., & Mercy Okechukwu, E. (2007). Evaluation of Tectona grandis (Linn.) and Gmelina arborea (Roxb.) for phytoremediation in crude oil contaminated soils. Agriculturae Conspectus Scientificus (ACS), 72(2), 149–152.

    Google Scholar 

  • McGuinness, M., & Dowling, D. (2009). Plant-associated bacterial degradation of toxic organic compounds in soil. International journal of environmental research and public health, 6(8), 2226–2247.

    CAS  Google Scholar 

  • Meagher, R. B. (2000). Phytoremediation of toxic elemental and organic pollutants. Current Opinion in Plant Biology, 3(2), 153–162.

    CAS  Google Scholar 

  • Mendelssohn, I. A., Andersen, G. L., Baltz, D. M., Caffey, R. H., Carman, K. R., Fleeger, J. W., & Rozas, L. P. (2012). Oil impacts on coastal wetlands: implications for the Mississippi River Delta ecosystem after the Deepwater Horizon oil spill. BioScience, 62(6), 562–574.

    Google Scholar 

  • Merkl, N., Schultze-Kraft, R., & Infante, C. (2004). Phytoremediation in the tropics—the effect of crude oil on the growth of tropical plants. Bioremediation Journal, 8(3–4), 177–184.

    CAS  Google Scholar 

  • Merkl, N., Schultze-Kraft, R., & Infante, C. (2005a). Phytoremediation in the tropics—influence of heavy crude oil on root morphological characteristics of graminoids. Environmental Pollution, 138(1), 86–91.

    CAS  Google Scholar 

  • Merkl, N., Schultze-Kraft, R., & Arias, M. (2005b). Influence of fertilizer levels on phytoremediation of crude oil-contaminated soils with the tropical pasture grass Brachiaria brizantha (Hochst. ex a. rich.) stapf. International Journal of Phytoremediation, 7(3), 217–230.

    CAS  Google Scholar 

  • Mkandawire, M., & Dudel, G. E. (2002). Uranium attenuation from tailing waters by floating macrophyte Lemna gibba L. In Uranium in the aquatic environment (pp. 623–630). Springer Berlin Heidelberg.

  • Mohamad, R. S., Verrastro, V., Cardone, G., Bteich, M. R., Favia, M., Moretti, M., & Roma, R. (2014). Optimization of organic and conventional olive agricultural practices from a Life Cycle Assessment and Life Cycle Costing perspectives. Journal of Cleaner Production, 70, 78–89.

    Google Scholar 

  • Molina-Barahona, L., Rodrıguez-Vázquez, R., Hernández-Velasco, M., Vega-Jarquın, C., Zapata-Pérez, O., Mendoza-Cantú, A., & Albores, A. (2004). Diesel removal from contaminated soils by biostimulation and supplementation with crop residues. Applied Soil Ecology, 27(2), 165–175.

    Google Scholar 

  • Moreira, I. T., Oliveira, O. M., Triguis, J. A., dos Santos, A. M., Queiroz, A. F., Martins, C. M., … & Jesus, R. S. (2011). Phytoremediation using Rizophora mangle L. in mangrove sediments contaminated by persistent total petroleum hydrocarbons (TPH’s). Microchemical Journal, 99(2), 376–382.

  • Mullin, J. V., & Champ, M. A. (2003). Introduction/overview to in situ burning of oil spills. Spill Science & Technology Bulletin, 8(4), 323–330.

    CAS  Google Scholar 

  • Murakami, Y., Kitamura, S. I., Nakayama, K., Matsuoka, S., & Sakaguchi, H. (2008). Effects of heavy oil in the developing spotted halibut, Verasper variegatus. Marine Pollution Bulletin, 57(6), 524–528.

    CAS  Google Scholar 

  • Ndimele, P. E. (2010). A review on the phytoremediation of petroleum hydrocarbon. Pakistan Journal of Biological Sciences, 13(15), 715.

    CAS  Google Scholar 

  • Ndimele, P. E., Kumolu-Johnson, C. A., & Anetekhai, M. A. (2011). The invasive aquatic macrophyte, water hyacinth {Eichhornia crassipes (Mart.) Solm-Laubach: Pontedericeae}: problems and prospects. Research Journal Environmental Sciences, 5(6), 509–520.

    Google Scholar 

  • Nikolopoulou, M., Pasadakis, N., & Kalogerakis, N. (2007). Enhanced bioremediation of crude oil utilizing lipophilic fertilizers. Desalination, 211(1), 286–295.

    CAS  Google Scholar 

  • Noori, A. S., Zare Maivan, H., & Alaie, E. (2014). Leucanthemum Vulgare Lam. germination, growth and mycorrhizal symbiosis under crude oil contamination. International Journal of Phytoremediation, 16(9), 962–970.

    CAS  Google Scholar 

  • O’Hara, P. D., & Morandin, L. A. (2010). Effects of sheens associated with offshore oil and gas development on the feather microstructure of pelagic seabirds. Marine Pollution Bulletin, 60(5), 672–678.

    Google Scholar 

  • Olutayo, M. (2007). Effects of amendments and bioaugumentation of soil polluted with crude oil, automotive gasoline oil, and spent engine oil on the growth of cowpea (Vigna ungiculata L. Walp). Scientific Research and Essays, 2(5), 147–149.

    Google Scholar 

  • Oropesa, A. L., Pérez-López, M., Hernández, D., García, J. P., Fidalgo, L. E., López-Beceiro, A., & Soler, F. (2007). Acetylcholinesterase activity in seabirds affected by the Prestige oil spill on the Galician coast (NW Spain). Science of the Total Environment, 372(2), 532–538.

    CAS  Google Scholar 

  • Pardue, M. J., Castle, J. W., Rodgers, J. H., Jr., & Huddleston, G. M., III. (2015). Effects of simulated oilfield produced water on early seedling growth after treatment in a pilot-scale constructed wetland system. International Journal of Phytoremediation, 17(4), 330–340.

    Google Scholar 

  • Patil, A. V., & Jadhav, J. P. (2013). Evaluation of phytoremediation potential of Tagetes patula L. for the degradation of textile dye Reactive Blue 160 and assessment of the toxicity of degraded metabolites by cytogenotoxicity. Chemosphere, 92(2), 225–232.

    CAS  Google Scholar 

  • Peng, S., Zhou, Q., Cai, Z., & Zhang, Z. (2009). Phytoremediation of petroleum contaminated soils by Mirabilis Jalapa L. in a greenhouse plot experiment. Journal of Hazardous Materials, 168(2), 1490–1496.

    CAS  Google Scholar 

  • Pezeshki, S. R., Hester, M. W., Lin, Q., & Nyman, J. A. (2000). The effects of oil spill and clean-up on dominant US Gulf coast marsh macrophytes: a review. Environmental Pollution, 108(2), 129–139.

    CAS  Google Scholar 

  • Rahman, M. A., & Hasegawa, H. (2011). Aquatic arsenic: phytoremediation using floating macrophytes. Chemosphere, 83(5), 633–646.

    CAS  Google Scholar 

  • Ramachandran, S. D., Sweezey, M. J., Hodson, P. V., Boudreau, M., Courtenay, S. C., Lee, K., & Dixon, J. A. (2006). Influence of salinity and fish species on PAH uptake from dispersed crude oil. Marine Pollution Bulletin, 52(10), 1182–1189.

    CAS  Google Scholar 

  • Ramos, D. T., Maranho, L. T., Godoi, A. F. L., da Silva Carvalho Filho, M. A., Lacerda, L. G., & de Vasconcelos, E. C. (2009). Petroleum hydrocarbons rhizodegradation by Sebastiania commersoniana (BAILL.) L. B. SM. & Downs. Water, Air, & Soil Pollution, 9(3–4), 293–302.

    Google Scholar 

  • Roldán-Martín, A., Calva-Calva, G., Rojas-Avelizapa, N., Díaz-Cervantes, M. D., & Rodríguez-Vázquez, R. (2007). Solid culture amended with small amounts of raw coffee beans for the removal of petroleum hydrocarbon from weathered contaminated soil. International Biodeterioration & Biodegradation, 60(1), 35–39.

    Google Scholar 

  • Ron, E. Z., & Rosenberg, E. (2014). Enhanced bioremediation of oil spills in the sea. Current Opinion in Biotechnology, 27, 191–194.

    CAS  Google Scholar 

  • Roy, A. S., Baruah, R., Gogoi, D., Borah, M., Singh, A. K., & Boruah, H. P. D. (2013). Draft genome sequence of Pseudomonas aeruginosa strain N002, isolated from crude oil-contaminated soil from Geleky, Assam, India. Genome announcements, 1(1), e00104–e00112.

    Google Scholar 

  • Roy, A. S., Baruah, R., Borah, M., Singh, A. K., Boruah, H. P. D., Saikia, N., … & Bora, T. C. (2014). Bioremediation potential of native hydrocarbon degrading bacterial strains in crude oil contaminated soil under microcosm study. International Biodeterioration & Biodegradation, 94, 79–89.

  • Salt, D. E., Smith, R. D., & Raskin, I. (1998). Phytoremediation. Annual Review of Plant Biology, 49(1), 643–668.

    CAS  Google Scholar 

  • Sanusi, S. N. A., Abdullah, S. R. S., & Idris, M. (2012). Preliminary test of phytoremediation of hydrocarbon contaminated soil using Paspalum Vaginatum Sw. Australian Journal of Basic & Applied Sciences, 6(1).

  • Sarkar, D., Ferguson, M., Datta, R., & Birnbaum, S. (2005). Bioremediation of petroleum hydrocarbons in contaminated soils: comparison of biosolids addition, carbon supplementation, and monitored natural attenuation. Environmental pollution, 136(1), 187–195.

    CAS  Google Scholar 

  • Sánchez, F., Velasco, F., Cartes, J. E., Olaso, I., Preciado, I., Fanelli, E., & Gutierrez-Zabala, J. L. (2006). Monitoring the Prestige oil spill impacts on some key species. Marine Pollution Bulletin, 53, 332–349.

    Google Scholar 

  • Sandhu, A., Halverson, L. J., & Beattie, G. A. (2007). Bacterial degradation of airborne phenol in the phyllosphere. Environmental Microbiology, 9(2), 383–392.

    CAS  Google Scholar 

  • Schnoor, J. L. (1997). Phytoremediation. Ground-Water Remediation Technologies Analysis Center (GWRTAC).

  • Sierra-Garcia, I. N., & de Oliveira, V. M. (2013). Microbial Hydrocarbon Degradation: Efforts to Understand Biodegradation in Petroleum Reservoirs.

  • Spier, C., Stringfellow, W. T., Hazen, T. C., & Conrad, M. (2013). Distribution of hydrocarbons released during the 2010 MC252 oil spill in deep offshore waters. Environmental Pollution, 173, 224–230.

    CAS  Google Scholar 

  • Suja, F., Rahim, F., Taha, M. R., Hambali, N., Rizal Razali, M., Khalid, A., & Hamzah, A. (2014). Effects of local microbial bioaugmentation and biostimulation on the bioremediation of total petroleum hydrocarbons (TPH) in crude oil contaminated soil based on laboratory and field observations. International Biodeterioration & Biodegradation, 90, 115–122.

    CAS  Google Scholar 

  • Syed, K., Doddapaneni, H., Subramanian, V., Lam, Y. W., & Yadav, J. S. (2010). Genome-to-function characterization of novel fungal P450 monooxygenases oxidizing polycyclic aromatic hydrocarbons (PAHs). Biochemical and biophysical research communications, 399(4), 492–497.

    CAS  Google Scholar 

  • Tara, N., Afzal, M., Ansari, T. M., Tahseen, R., Iqbal, S., & Khan, Q. M. (2014). Combined use of alkane-degrading and plant growth-promoting bacteria enhanced phytoremediation of diesel contaminated soil. International Journal of Phytoremediation, 16(12), 1268–1277.

    CAS  Google Scholar 

  • Thawale, P. R., Juwarkar, A. A., & Singh, S. K. (2006). Resource conservation through land treatment of municipal wastewater. Current Science, 90(5), 704–711.

    CAS  Google Scholar 

  • Unterbrunner, R., Wieshammer, G., Hollender, U., Felderer, B., Wieshammer-Zivkovic, M., Puschenreiter, M., & Wenzel, W. W. (2007). Plant and fertiliser effects on rhizodegradation of crude oil in two soils with different nutrient status. Plant and Soil, 300(1–2), 117–126.

    CAS  Google Scholar 

  • Urum, K., & Pekdemir, T. (2004). Evaluation of biosurfactants for crude oil contaminated soil washing. Chemosphere, 57(9), 1139–1150.

    CAS  Google Scholar 

  • U.S. EPA (2000) Introduction to phytoremediation. EPA 600-R-99-107, Office of Research and Development. http://clu-in.org/download/remed/introphyto.pdf.

  • Van Epps, A. (2006). Phytoremediation of petroleum hydrocarbons. Environmental Protection Agency, US.

  • Venosa, A. D., & Zhu, X. (2003). Biodegradation of crude oil contaminating marine shorelines and freshwater wetlands. Spill Science & Technology Bulletin, 8(2), 163–178.

    CAS  Google Scholar 

  • Viñas, L., Franco, M. A., Soriano, J. A., González, J. J., Ortiz, L., Bayona, J. M., & Albaigés, J. (2009). Accumulation trends of petroleum hydrocarbons in commercial shellfish from the Galician coast (NW Spain) affected by the Prestige oil spill. Chemosphere, 75(4), 534–541.

    Google Scholar 

  • Walls, W. D. (2010). Petroleum refining industry in China. Energy Policy, 38(5), 2110–2115.

    Google Scholar 

  • Wang, M. C., Chen, Y. T., Chen, S. H., Chien, S. C., & Sunkara, S. V. (2012). Phytoremediation of pyrene contaminated soils amended with compost and planted with ryegrass and alfalfa. Chemosphere, 87(3), 217–225.

    CAS  Google Scholar 

  • Wang, J., Liu, X., Zhang, X., Liang, X., & Zhang, W. (2011). Growth response and phytoremediation ability of Reed for diesel contaminant. Procedia Environmental Sciences, 8, 68–74.

    CAS  Google Scholar 

  • White, P. M., Jr., Wolf, D. C., Thoma, G. J., & Reynolds, C. M. (2006). Phytoremediation of alkylated polycyclic aromatic hydrocarbons in a crude oil-contaminated soil. Water, Air, and Soil Pollution, 169(1–4), 207–220.

    CAS  Google Scholar 

  • White, P. M., Jr., Wolf, D. C., Thoma, G. J., & Reynolds, C. M. (2003). Influence of organic and inorganic soil amendments on plant growth in crude oil‐contaminated soil. International journal of phytoremediation, 5(4), 381–397.

    CAS  Google Scholar 

  • Wiebner, A., Kuschk, P., & Stottmeister, U. (2002). Oxygen release by roots of Typha latifolia and Juncus effusus in laboratory hydroponic systems. Acta Biotechnologica, 22(1–2), 209–216.

    Google Scholar 

  • Wiese, F. K., & Ryan, P. C. (2003). The extent of chronic marine oil pollution in southeastern Newfoundland waters assessed through beached bird surveys 1984–1999. Marine Pollution Bulletin, 46(9), 1090–1101.

    CAS  Google Scholar 

  • Wiltse, C. C., Rooney, W. L., Chen, Z., Schwab, A. P., & Banks, M. K. (1998). Greenhouse evaluation of agronomic and crude oil-phytoremediation potential among alfalfa genotypes. Journal of Environmental Quality, 27(1), 169–173.

    CAS  Google Scholar 

  • Xiu, M., Pan, L., & Jin, Q. (2014). Bioaccumulation and oxidative damage in juvenile scallop Chlamys farreri exposed to benzo [a] pyrene, benzo [b] fluoranthene and chrysene. Ecotoxicology and Environmental Safety, 107, 103–110.

    CAS  Google Scholar 

  • Xu, L., Teng, Y., Li, Z. G., Norton, J. M., & Luo, Y. M. (2010). Enhanced removal of polychlorinated biphenyls from alfalfa rhizosphere soil in a field study: the impact of a rhizobial inoculum. Science of the Total Environment, 408(5), 1007–1013.

    CAS  Google Scholar 

  • Yang, C. H., & Crowley, D. E. (2000). Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Applied and environmental microbiology, 66(1), 345–351.

    CAS  Google Scholar 

  • Yang, S. Z., Jin, H. J., Wei, Z., He, R. X., Ji, Y. J., Li, X. M., & Yu, S. P. (2009). Bioremediation of oil spills in cold environments: a review. Pedosphere, 19(3), 371–381.

    CAS  Google Scholar 

  • Yenn, R., Borah, M., Boruah, H. D., Roy, A. S., Baruah, R., Saikia, N., & Tamuli, A. K. (2014). Phytoremediation of abandoned crude oil contaminated drill sites of assam with the aid of a hydrocarbon-degrading bacterial formulation. International Journal of Phytoremediation, 16(9), 909–925.

    CAS  Google Scholar 

  • Zengel, S. A., Michel, J., & Dahlin, J. A. (2003). Environmental effects of in situ burning of oil spills in inland and upland habitats. Spill Science & Technology Bulletin, 8(4), 373–377.

    CAS  Google Scholar 

  • Zheng, M., Ahuja, M., Bhattacharya, D., Clement, T. P., Hayworth, J. S., & Dhanasekaran, M. (2014). Evaluation of differential cytotoxic effects of the oil spill dispersant Corexit 9500. Life sciences, 95(2), 108–117.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Ministry of Education, Malaysia, for providing financial support (Grant No. 0153AB-J13) for this research under MyRA grant scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amirhossein Malakahmad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yavari, S., Malakahmad, A. & Sapari, N.B. A Review on Phytoremediation of Crude Oil Spills. Water Air Soil Pollut 226, 279 (2015). https://doi.org/10.1007/s11270-015-2550-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2550-z

Keywords

Navigation