Skip to main content

Advertisement

Log in

Application of Scallop shell-Fe3O4 Nano-Composite for the Removal Azo Dye from Aqueous Solutions

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Scallop shell-Fe3O4 nanoparticles were synthesized by co-precipitation and hydrothermal methods. The removal efficiency of RB5 was studied as a function of pH, adsorbent dosage, initial RB5 concentration, ionic strength, and temperature. Coating of Fe3O4 nanoparticles onto Scallop shell was identified by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and energy dispersive X-ray (EDX) analysis. Maximum adsorption was obtained at pH 3. The removal efficiency of RB5 was increased with increasing adsorbent dosage. However, it was decreased with increasing initial RB5 concentration, temperature and in the presence of any anions. Adsorption kinetic study revealed that the pseudo-second order model better described the removal rate than the pseudo-first order model and intra-particle diffusion model. Adsorption isotherm was analyzed by both Langmuir and Freundlich equation. Experimental result was well described by the Langmuir equation. Maximum adsorption capacity was estimated to be 1111.11 mg/g. Thermodynamic studies indicated that the adsorption of RB5 onto Scallop shell-Fe3O4 nanoparticles was an endothermic (∆H = 178.14 KJ mol−1) process. The negative values of free energy (∆G) for the adsorption indicated that adsorption of RB5 was spontaneous reaction. Adsorption activity of RB5 by Scallop shell-Fe3O4 nanoparticles was maintained even after six successive cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Aguedach, A., Brosillon, S., Morvan, J., & Lhadi, E. K. (2005). Photocatalytic degradation of azo-dyes Reactive Black 5 and reactive yellow 145 in water over a newly deposited titanium dioxide. Applied Catalysis B: Environmental, 57, 55–62.

    Article  CAS  Google Scholar 

  • Aksu, Z. (2001). Biosorption of reactive dyes by dried activated sludge: equilibrium and kinetic modelling. Biochemical Engineering Journal, 7, 79–84.

    Article  CAS  Google Scholar 

  • Alinsafi, A., Khemis, M., Pons, M., Leclerc, J., Yaacoubi, A., Benhammou, A., & Nejmeddine, A. (2005). Electro-coagulation of reactive textile dyes and textile wastewater. Chemical Engineering and Processing Process Intensification, 44, 461–470.

    Article  CAS  Google Scholar 

  • Araghi, S. H., & Entezari, M. H. (2015). Amino-functionalized silica magnetite nanoparticles for the simultaneous removal of pollutants from aqueous solution. Applied Surface Science, 333, 68–77.

    Article  Google Scholar 

  • Azizian, S. (2004). Kinetic models of sorption: a theoretical analysis. Journal of Colloid and Interface Science, 276, 47–52.

    Article  CAS  Google Scholar 

  • Bazrafshan, E., Kord Mostafapour, F., Rahdar, S., & Mahvi, A. H. (2014). Equilibrium and thermodynamics studies for decolorization of Reactive Black 5 (RB5) by adsorption onto MWCNTs. Desalination and Water Treatment, 1–11.

  • Chang, C.-J., Lin, C.-Y., & Hsu, M.-H. (2014). Enhanced photocatalytic activity of Ce-doped ZnO nanorods under UV and visible light. Journal of the Taiwan Institute of Chemical Engineers, 45, 1954–1963.

    Article  CAS  Google Scholar 

  • Chen, A.-H., & Huang, Y.-Y. (2010). Adsorption of Remazol Black 5 from aqueous solution by the templated crosslinked-chitosans. Journal of Hazardous Materials, 177, 668–675.

    Article  CAS  Google Scholar 

  • Choi, H.-D., Shin, M.-C., Kim, D.-H., Jeon, C.-S., & Baek, K. (2008). Removal characteristics of Reactive Black 5 using surfactant-modified activated carbon. Desalination, 223, 290–298.

    Article  CAS  Google Scholar 

  • de Luna, M. D. G., Flores, E. D., Genuino, D. A. D., Futalan, C. M., & Wan, M.-W. (2013). Adsorption of Eriochrome Black T (EBT) dye using activated carbon prepared from waste rice hulls—optimization, isotherm and kinetic studies. Journal of the Taiwan Institute of Chemical Engineers, 44, 646–653.

    Article  Google Scholar 

  • Eren, Z., & Acar, F. N. (2007). Equilibrium and kinetic mechanism for Reactive Black 5 sorption onto high lime Soma fly ash. Journal of Hazardous Materials, 143, 226–232.

    Article  CAS  Google Scholar 

  • Farrokhi, M., Hosseini, S.-C., Yang, J.-K., & Shirzad-Siboni, M. (2014). Application of ZnO–Fe3O4 nanocomposite on the removal of azo dye from aqueous solutions: kinetics and equilibrium studies. Water, Air, & Soil Pollution, 225, 1–12.

    Article  CAS  Google Scholar 

  • Ghoreishian, S. M., Badii, K., Norouzi, M., Rashidi, A., Montazer, M., Sadeghi, M., & Vafaee, M. (2014). Decolorization and mineralization of an azo reactive dye using loaded nano-photocatalysts on spacer fabric: kinetic study and operational factors. Journal of the Taiwan Institute of Chemical Engineers, 45, 2436–2446.

    Article  CAS  Google Scholar 

  • Gulnaz, O., Kaya, A., & Dincer, S. (2006). The reuse of dried activated sludge for adsorption of reactive dye. Journal of Hazardous Materials, 134, 190–196.

    Article  CAS  Google Scholar 

  • Handan, U. (2011). Equilibrium, thermodynamic and kinetics of reactive black 5 biosorption on loquat (Eriobotrya japonica) seed. Scientific Research and Essays, 6, 4113–4124.

    Google Scholar 

  • Heibati, B., Rodriguez-Couto, S., Amrane, A., Rafatullah, M., Hawari, A., & Al-Ghouti, M. A. (2014). Uptake of Reactive Black 5 by pumice and walnut activated carbon: chemistry and adsorption mechanisms. Journal of Industrial and Engineering Chemistry, 20, 2939–2947.

    Article  CAS  Google Scholar 

  • Horwitz, W. (2000). Standard methods for the examination of water and wastewater (20th ed.). Washington, DC: APHA.

    Google Scholar 

  • Iram, M., Guo, C., Guan, Y., Ishfaq, A., & Liu, H. (2010). Adsorption and magnetic removal of neutral red dye from aqueous solution using Fe3O4 hollow nanospheres. Journal of Hazardous Materials, 181, 1039–1050.

    Article  CAS  Google Scholar 

  • Jiang, H., Chen, P., Luo, S., Luo, X., Tu, X., Cao, Q., Zhou, Y., & Zhang, W. (2013). Synthesis of novel biocompatible composite Fe3O4 /ZrO2/chitosan and its application for dye removal. Journal of Inorganic and Organometallic Polymers and Materials, 23, 393–400.

    Article  CAS  Google Scholar 

  • Karadag, D., Turan, M., Akgul, E., Tok, S., & Faki, A. (2007). Adsorption equilibrium and kinetics of Reactive Black 5 and reactive red 239 in aqueous solution onto surfactant-modified zeolite. Journal of Chemical & Engineering Data, 52, 1615–1620.

    Article  CAS  Google Scholar 

  • Kim, S.-C., & Lee, D.-K. (2004). Preparation of Al–Cu pillared clay catalysts for the catalytic wet oxidation of reactive dyes. Catalysis Today, 97, 153–158.

    Article  CAS  Google Scholar 

  • Koyuncu, I. (2002). Reactive dye removal in dye/salt mixtures by nanofiltration membranes containing vinylsulphone dyes: effects of feed concentration and cross flow velocity. Desalination, 143, 243–253.

    Article  CAS  Google Scholar 

  • Kyzas, G. Z., Travlou, N. A., Kalogirou, O., & Deliyanni, E. A. (2013). Magnetic graphene oxide: effect of preparation route on Reactive Black 5 adsorption. Materials, 6, 1360–1376.

    Article  CAS  Google Scholar 

  • Liu, Y., & Liu, Y.-J. (2008). Biosorption isotherms, kinetics and thermodynamics. Separation and Purification Technology, 61, 229–242.

    Article  CAS  Google Scholar 

  • Mahmoodi, N. M. (2013). Magnetic ferrite nanoparticle–alginate composite: synthesis, characterization and binary system dye removal. Journal of the Taiwan Institute of Chemical Engineers, 44, 322–330.

    Article  CAS  Google Scholar 

  • Meriç, S., Kaptan, D., & Ölmez, T. (2004). Color and COD removal from wastewater containing Reactive Black 5 using Fenton’s oxidation process. Chemosphere, 54, 435–441.

    Article  Google Scholar 

  • Nabil, G. M., El-Mallah, N. M., & Mahmoud, M. E. (2014). Enhanced decolorization of Reactive Black 5 dye by active carbon sorbent-immobilized-cationic surfactant (AC-CS). Journal of Industrial and Engineering Chemistry, 20, 994–1002.

    Article  CAS  Google Scholar 

  • Nethaji, S., Sivasamy, A., & Mandal, A. (2013). Preparation and characterization of corn cob activated carbon coated with nano-sized magnetite particles for the removal of Cr (VI). Bioresource Technology, 134, 94–100.

    Article  CAS  Google Scholar 

  • Ong, S.-A., Ho, L.-N., Wong, Y.-S., & Raman, K. (2012). Performance and kinetic study on bioremediation of diazo dye (Reactive Black 5) in wastewater using spent GAC–biofilm sequencing batch reactor. Water, Air, & Soil Pollution, 223, 1615–1623.

    Article  CAS  Google Scholar 

  • Ozdemir, O., Armagan, B., Turan, M., & Celik, M. S. (2004). Comparison of the adsorption characteristics of azo-reactive dyes on mezoporous minerals. Dyes and Pigments, 62, 49–60.

    Article  CAS  Google Scholar 

  • Patel, R., & Suresh, S. (2008). Kinetic and equilibrium studies on the biosorption of reactive black 5 dye by Aspergillus foetidus. Bioresource Technology, 99, 51–58.

    Article  CAS  Google Scholar 

  • Patterson, A. (1939). The Scherrer formula for X-ray particle size determination. Physical Review, 56, 978.

    Article  CAS  Google Scholar 

  • Pengthamkeerati, P., Satapanajaru, T., & Singchan, O. (2008). Sorption of reactive dye from aqueous solution on biomass fly ash. Journal of Hazardous Materials, 153, 1149–1156.

    Article  CAS  Google Scholar 

  • Poursaberi, T., & Hassanisadi, M. (2013). Magnetic removal of Reactive Black 5 from wastewater using ionic liquid grafted‐magnetic nanoparticles. CLEAN–Soil. Air, Water, 41, 1208–1215.

    Article  CAS  Google Scholar 

  • Sadaf, S., & Bhatti, H. N. (2014). Batch and fixed bed column studies for the removal of Indosol Yellow BG dye by peanut husk. Journal of the Taiwan Institute of Chemical Engineers, 45, 541–553.

    Article  CAS  Google Scholar 

  • Samarghandi, M., Azizian, S., Siboni, M. S., Jafari, S., & Rahimi, S. (2011). Removal of divalent nickel from aqueous solutions by adsorption onto modified holly sawdust: equilibrium and kinetics. Iranian Journal of Environmental Health Science & Engineering, 8, 167–174.

    Google Scholar 

  • Şengil, I. A., & Özacar, M. (2009). The decolorization of CI Reactive Black 5 in aqueous solution by electrocoagulation using sacrificial iron electrodes. Journal of Hazardous Materials, 161, 1369–1376.

    Article  Google Scholar 

  • Shaheed, M. A., & Hussein, F. H. (2014). Adsorption of Reactive Black 5 on synthesized titanium dioxide nanoparticles: equilibrium isotherm and kinetic studies. Journal of Nanomaterials, 2014, 3.

    Article  Google Scholar 

  • Shaker, M. A. (2015). Thermodynamics and kinetics of bivalent cadmium biosorption onto nanoparticles of chitosan-based biopolymers. Journal of the Taiwan Institute of Chemical Engineers, 47, 79–90.

    Article  CAS  Google Scholar 

  • Shirzad-Siboni, M., Samarghandi, M., Azizian, S., Kim, W., & Lee, S. (2011a). The removal of hexavalent chromium from aqueous solutions using modified holly sawdust: equilibrium and kinetics studies. Environmental Engineering Research, 16, 55–60.

    Article  Google Scholar 

  • Shirzad-Siboni, M., Samarghandi, M., Yang, J.-K., & Lee, S.-M. (2011b). Photocatalytic Removal of Reactive Black-5 dye from aqueous solution by UV irradiation in aqueous TiO2: equilibrium and kinetics study. Journal of Advanced Oxidation Technologies, 14, 302–307.

    Google Scholar 

  • Shirzad-Siboni, M., Jafari, S. J., Giahi, O., Kim, I., Lee, S.-M., & Yang, J.-K. (2014a). Removal of acid blue 113 and Reactive Black 5 dye from aqueous solutions by activated red mud. Journal of Industrial and Engineering Chemistry, 20, 1432–1437.

    Article  CAS  Google Scholar 

  • Shirzad-Siboni, M., Khataee, A., & Joo, S. W. (2014b). Kinetics and equilibrium studies of removal of an azo dye from aqueous solution by adsorption onto scallop. Journal of Industrial and Engineering Chemistry, 20, 610–615.

    Article  CAS  Google Scholar 

  • Shirzad-Siboni, M., Khataee, A., Vafaei, F., & Joo, S. W. (2014c). Comparative removal of two textile dyes from aqueous solution by adsorption onto marine-source waste shell: kinetic and isotherm studies. Korean Journal of Chemical Engineering, 1–9.

  • Soltani, T., & Entezari, M. (2013). Solar photocatalytic degradation of RB5 by ferrite bismuth nanoparticles synthesized via ultrasound. Ultrasonics Sonochemistry, 20, 1245–1253.

    Article  CAS  Google Scholar 

  • Travlou, N. A., Kyzas, G. Z., Lazaridis, N. K., & Deliyanni, E. A. (2013a). Functionalization of graphite oxide with magnetic chitosan for the preparation of a nanocomposite dye adsorbent. Langmuir, 29, 1657–1668.

    Article  CAS  Google Scholar 

  • Travlou, N. A., Kyzas, G. Z., Lazaridis, N. K., & Deliyanni, E. A. (2013b). Graphite oxide/chitosan composite for reactive dye removal. Chemical Engineering Journal, 217, 256–265.

    Article  CAS  Google Scholar 

  • Vijayaraghavan, K., & Yun, Y.-S. (2007). Utilization of fermentation waste (Corynebacterium glutamicum) for biosorption of Reactive Black 5 from aqueous solution. Journal of Hazardous Materials, 141, 45–52.

    Article  CAS  Google Scholar 

  • Vijayaraghavan, K., & Yun, Y.-S. (2008). Biosorption of CI Reactive Black 5 from aqueous solution using acid-treated biomass of brown seaweed Laminaria sp. Dyes and Pigments, 76, 726–732.

    Article  CAS  Google Scholar 

  • Vimonses, V., Lei, S., Jin, B., Chow, C. W. K., & Saint, C. (2009). Adsorption of congo red by three Australian kaolins. Applied Clay Science, 43, 465–472.

    Article  CAS  Google Scholar 

  • Xue, Y., Hou, H., & Zhu, S. (2009). Adsorption removal of reactive dyes from aqueous solution by modified basic oxygen furnace slag: isotherm and kinetic study. Chemical Engineering Journal, 147, 272–279.

    Article  CAS  Google Scholar 

  • Yang, N., Zhu, S., Zhang, D., & Xu, S. (2008). Synthesis and properties of magnetic Fe 3 O 4-activated carbon nanocomposite particles for dye removal. Materials Letters, 62, 645–647.

    Article  CAS  Google Scholar 

  • Yao, Y., Miao, S., Liu, S., Ma, L. P., Sun, H., & Wang, S. (2012). Synthesis, characterization, and adsorption properties of magnetic Fe3O4@graphene nanocomposite. Chemical Engineering Journal, 184, 326–332.

    Article  CAS  Google Scholar 

  • Yeom, S. H., & Jung, K.-Y. (2009). Recycling wasted scallop shell as an adsorbent for the removal of phosphate. Journal of Industrial and Engineering Chemistry, 15, 40–44.

    Article  CAS  Google Scholar 

  • Zawani, Z., Chuah, A., & Choong, T. (2009). Equilibrium, kinetics and thermodynamic studies: adsorption of Remazol Black 5 on the palm kernel shell activated carbon. European Journal of Scientific Research, 37, 67–76.

    Google Scholar 

  • Zhang, Z., & Kong, J. (2011). Novel magnetic Fe3O4@C nanoparticles as adsorbents for removal of organic dyes from aqueous solution. Journal of Hazardous Materials, 193, 325–329.

    Article  CAS  Google Scholar 

  • Zhu, H.-Y., Jiang, R., & Xiao, L. (2010). Adsorption of an anionic azo dye by chitosan/kaolin/γ-Fe2O3 composites. Applied Clay Science, 48, 522–526.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Guilan and Iran Universities of Medical Sciences of Iran for their contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Shirzad-Siboni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohagheghian, A., Vahidi-Kolur, R., Pourmohseni, M. et al. Application of Scallop shell-Fe3O4 Nano-Composite for the Removal Azo Dye from Aqueous Solutions. Water Air Soil Pollut 226, 321 (2015). https://doi.org/10.1007/s11270-015-2539-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2539-7

Keywords

Navigation