Skip to main content
Log in

Screening and Identification of Ligninolytic Bacteria for the Treatment of Pulp and Paper Mill Effluent

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Lignin is the major polluting and colouring constituent present in pulp and paper mill effluent. To degrade lignin and its derivatives, bacterial enzymes can play an important role due to stability at extreme environmental conditions. This study explored the degradation of pulp and paper mill effluent by a rod-shaped Gram-positive bacterial strain RJH-1, isolated from sludge, based on its efficiency to reduce COD, colour, AOX and lignin content. This bacterial isolate was able to grow in nitrogen-free Jensen medium. Further, RJH-1 was identified as Brevibacillus agri strain after 16 s rRNA gene sequencing. Degradation potential of this isolated bacterial strain was evaluated by batch and semi-continuous reactor study. In batch study, the isolate reduced 69 % COD, 47 % colour, 37 % lignin and 39 % AOX after 5 days whereas in control flask, 40 % COD, 26 % colour, 19 % lignin and 22 % AOX reduction was observed by the indigenous bacteria present in wastewater. During semi-continuous reactor study, it reduced 62 % COD, 37 % colour, 30 % lignin and 40 % AOX of effluent at a retention time of only 32 h whereas the reduction in control reactor was 36 % COD, 21 % colour, 18 % lignin and 29 % AOX. This study confirmed that the B. agri has the potential to degrade the lignin and reduce the colour and COD of the pulp and paper mill waste water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • American Public Health Association. (1998). American Water Works Association and Water Environment Federation, Standard Methods for the Examination of Water and Wastewater (20th ed.). Washington: APHA.

    Google Scholar 

  • Amman, R., Ludwig, W., & Schleifer, K. (1995). Phylogenetic identification and in situ detection of individual microbial cell without cultivation. Microbiological Reviews, 59, 143–169.

    Google Scholar 

  • Ang, T. N., Ngoh, G. C., & Chua, A. S. (2011). A quantitative method for fungal ligninolytic enzyme screening studies. Asia-Pacific Journal of Chemical Engineering, 6, 589–595.

    Article  CAS  Google Scholar 

  • Archibald, F. S. (1992). A new assay for lignin-type peroxidases employing the dye Azure B. Applied and Environmental Microbiology, 58, 3110–3116.

    CAS  Google Scholar 

  • Bajpai, P., Mehna, A., & Bajpai, P. K. (1993). Decolorization of kraft bleach plant effluent with the white rot fungus Trametes versicolor. Process Biochemistry, 28, 377–384.

    Article  CAS  Google Scholar 

  • Banat, I. M., Nigam, P., Singh, D., & Marchant, R. (1996). Microbial decolorization of textile dye-containing effluents: a review. Bioprocess Technology, 58, 217–227.

    Article  CAS  Google Scholar 

  • Bandounas, L., Wierckx, N. J. P., de Winde, J. H., & Ruijssenaars, H. J. (2011). Isolation and characterization of novel bacterial strains exhibiting ligninolytic potential. BMC Biotechnology, 11, 94.

  • Barrow, G. I., & Feltham, R. K. A. (1993). Cowan and Steel’s manual for the identification of medical bacteria, 3rd Edn. Cambridge University.

  • Berryman, D., Houde, F., Deblois, C., & O’Shea, M. (2004). Non phenolic compounds in drinking and surface waters downstream of treated textile and pulp and paper effluents: a survey and preliminary assessment of their potential effects on public health and aquatic life. Chemosphere, 56(3), 247–255.

    Article  CAS  Google Scholar 

  • Buchanan, R. E., & Gibbons, N. E. (1974). Bergey’s Manual of Determinative Bacteriology (8th ed., pp. 290–340). Baltimore: Williams & Wilkins.

    Google Scholar 

  • Bucher, V. V. C., Hyde, K. D., Pointing, S. B., & Reddy, C. A. (2004). Production of wood decay enzymes, mass loss and lignin solubilization in wood by marine ascomycetes and their anamorphs. Fungal Diversity, 15, 1–14.

    Google Scholar 

  • Bugg, T. D. H., Ahmad, M., Hardiman, M. E., & Rahmanpour, R. (2011). Pathways for degradation of lignin in bacteria and Fungi. Natural Product Reports, 28, 1883–1896.

  • Chandra, R., & Abhishek, A. (2011). Bacterial decolorization of black liquor in axenic and mixed condition and characterization of metabolites. Biodegradation, 22, 603–611.

    Article  CAS  Google Scholar 

  • Chandra, R., & Bhargava, R. (2012). Bacterial degradation of synthetic and craft lignin by axenic and mixed culture and their metabolite production. Journal of Environmental Biology, 34, 991–997.

    Google Scholar 

  • Chandra, R., Raj, A., Purohit, H. J., & Kapley, A. (2007). Characterization and optimization of three potential aerobic bacterial strains for kraft lignin degradation from pulp paper waste. Chemosphere, 67, 839–846.

    Article  CAS  Google Scholar 

  • Chandra, R., Raj, A., Yadav, S., & Patel, D. (2009). Reduction of pollutants in pulp paper mill effluent treated by PCP-degrading bacterial strains. Environmental Monitoring and Assessment, 76, 547–552.

    Google Scholar 

  • Chuphal, Y., Kumar, V., & Thakur, I. S. (2005). Biodegradation and decolorization of pulp and paper mill effluent by anaerobic and aerobic microorganisms in a sequential bioreactor. World Journal of Microbiology and Biotechnology, 21, 1439–1445.

    Article  CAS  Google Scholar 

  • Cowan, S. T., Steel, K. J., Barrow, G. I., Feltham, R. K. A. (2004). Cowan and Steel's manual for the identification of medical bacteria, books.google.com.

  • CPCB (2001). Comprehensive industry document for large pulp and paper industry. COINDS/36/2000-2001.

  • Diwaniyan, S., Kharab, D., Raghukumar, C., & Kuhad, R. C. (2010). Decolourization of synthetic dyes and textile effluents by basidiomycetous fungi. Water, Air and Soil Pollution, 210, 409–419.

    Article  CAS  Google Scholar 

  • Driessel, B. V., & Christov, L. (2001). Decolorization of bleach plant effluent by mucoralean and white-rot fungi in a rotating biological contactor reactor. Journal of Bioscience and Bioengineering, 92, 271–276.

    Article  CAS  Google Scholar 

  • EL-Hanafy, A. A., Abd-Elsalam, H. E., & Hafez, E. E. (2007). Fingerprinting for the lignin degrading bacteria from the soil. Journal of Applied Sciences Research, 3, 470–475.

    CAS  Google Scholar 

  • EL-Hanafy, A. A., Abd-Elsalam, H. E., & Hafez, E. E. (2008). Molecular characterization of two native Egyptian ligninolytic bacterial strains. Journal of Applied Sciences Research, 4, 1291–1296.

    CAS  Google Scholar 

  • Gomathi, V., Cibichakravarthy, B., Ramanathan, A., Sivaramaiah, N., Ramanjaneya, V., Mula, R., Jayasimha, R.D. (2012). Decolourization of paper mill effluent by immobilized cells of phanerochaete chrysosporium. International Journal Of Plant, Animal and Environmental Sciences, 2(1), 141–146.

  • Gupta, V. K., Minocha, A. K., & Jain, N. (2009). Batch and continuous studies on treatment of pulp mill waste water by Aeromonas formicans. Journal of Chemical Technology and Biotechnology, 76, 547–552.

    Article  Google Scholar 

  • Hao, D. T., & Man, T. D. (2006). Study on treatment of alkaline black liquor using sulphate reducing bacteria. Advances in Natural Sciences, 7, 139–144.

    Google Scholar 

  • Husain, Q. (2006). Potential applications of the oxidoreductive enzymes in the decolorization and detoxification of textile and other synthetic dyes from polluted water: a review. Critical Reviews in Biotechnology, 26(4), 201–221.

    Article  CAS  Google Scholar 

  • Kiiskinen, L. L., Rättö, M., & Kruus, K. (2004). Screening for novel laccase-producing microbes. Journal of Applied Microbiology, 97, 640–646.

    Article  CAS  Google Scholar 

  • Manji, S., & Ishihara, A. (2004). Screening of tetrachlorodibenzo-p-dioxin-degrading fungi capable of producing extracellular peroxidases under various conditions. Applied Microbiology and Biotechnology, 63, 438–444.

    Article  CAS  Google Scholar 

  • Morii, H., Nakamiya, K., & Kinoshita, S. (1995). Isolation of lignin decolourising bacterium. Journal of Fermentation and Bioengineering, 80, 296–299.

    Article  CAS  Google Scholar 

  • Pangallo, D., ImonovicOva, A. S., Chovanova, K., & Ferianc, P. (2007). Wooden art objects and the museum environment: identification and biodegradative characteristics of isolated microflora. Letters in Applied Microbiology, 45, 87–94.

    Article  CAS  Google Scholar 

  • Pant, D., & Adholeya, A. (2007). Identification, ligninolytic enzyme activity and decolorization potential of two fungi isolated from a distillery effluent contaminated site. Water, Air, and Soil Pollution, 183, 165–176.

    Article  CAS  Google Scholar 

  • Pearl, I. A., & Benson, H. K. (1940). The determination of lignin in sulphide pulping liquor. Paper Trade Journal, 111, 35–36.

    CAS  Google Scholar 

  • Pfenning, N., & Lippert, K. D. (1966). Uber das vitamin B-12-bedrurbins phototropher schwefelbakterien. Archives of Microbiology, 55, 245–256.

    Google Scholar 

  • Pokhrel, D., & Viraraghavan, T. (2004). Treatment of pulp and paper mill waste water: A review. Science of the Total Environment Journal, 333, 37–58.

    Article  CAS  Google Scholar 

  • Ponting, S. B. (1999). Qualitative methods for determination of lignocellulolytic enzyme production by tropical fungi. Fungal Diversty, 2, 17–33.

    Google Scholar 

  • Raj, A., Chandra, R., Reddy, M. M. K., Purohit, H. J., & Kapley, A. (2007a). Biodegradation of kraft lignin by a newly isolated bacterial strain, Aneurinibacillus aneurinilyticus from the sludge of a pulp paper mill. World Journal of Microbiology and Biotechnology, 23, 793–799.

    Article  CAS  Google Scholar 

  • Raj, A., Chandra, R., Reddy, M. M. K., Purohit, H. J., & Kapley, A. (2007b). Biodegradation of Kraft lignin by Bacillus sp. Isolated from sludge of pulp and paper mill. Biodegradation, 18, 783–792.

    Article  CAS  Google Scholar 

  • Raj, A., Kumar, S., Haq, I., & Singh, S. K. (2014). Bioremediation and toxicity reduction in pulp and paper mill effluent by newly isolated ligninolytic Paenibacillus Sp. Ecological Engineering, 71, 355–362.

    Article  Google Scholar 

  • Reddy, P., Pillay L.V., Kunamneni, A., Singh, S. (2005). Degradation of pulp and paper mill effluent by thermophilic microorganisms using batch systems. Water SA, 31(4), 575–580.

  • Saraswathi, R., & Saseetharan, M. K. (2010). Investigation on Microorganisms and their Degradation Efficiency in Paper and Pulp Mill Effluent. Journal of Water Resource and Protection, 2, 660–664.

    Article  CAS  Google Scholar 

  • Singh, S., Chandra, R., Patel, D. K., Reddy, M. M. K., & Rai, V. (2008). Investigation of the biotransformation of pentachlorophenol and pulp paper mill effluent decolorization by the bacterial strains in a mixed culture. Bioresource Technology, 99, 5703–5709.

    Article  CAS  Google Scholar 

  • Singh, Y. P., Dhall, P., Mathur, R. M., Jain, R. K., Thakur, V., Kumar, V., Kumar, R., & Kumar, A. (2011). Bioremediation of pulp and paper mill effluent by tannic acid degrading Enterobacter sp. Water, Air and Soil Pollution, 218, 693–701.

    Article  CAS  Google Scholar 

  • Singhal, A., & Thakur, I. S. (2009). Decolorization and detoxification of pulp and paper mill effluent by Cryptococcus sp. Biochemical Engineering Journal, 46, 21–27.

    Article  CAS  Google Scholar 

  • Swamy, J., & Ramsay, J. A. (1999). The evaluation of white rot fungi in the decolorization of textile dyes. Enzyme and Microbial Technology, 24, 130–137.

    Article  CAS  Google Scholar 

  • Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24, 1596–1599.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thankfully acknowledge the Director, Avantha Centre for Industrial Research and Development, Yamuna Nagar for the research facilities provided during the course of investigation. The first author is thankful to Dr. Puneet Pathak for his help and support in carrying out experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nishi K. Bhardwaj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hooda, R., Bhardwaj, N.K. & Singh, P. Screening and Identification of Ligninolytic Bacteria for the Treatment of Pulp and Paper Mill Effluent. Water Air Soil Pollut 226, 305 (2015). https://doi.org/10.1007/s11270-015-2535-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2535-y

Keywords

Navigation