Skip to main content
Log in

Nano Photo Catalytic Degradation of the Pharmaceutical Agent Balsalazide Under UV Slurry Photo Reactor

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The presence of pharmaceuticals and personal care products (PPCPs) as trace pollutants in natural surface water bodies, ground water and drinking water has recently led to some concern. Advanced oxidation processes (AOPs), which utilize free radical reactions to degrade chemical contaminates, are an alternative to traditional water treatment. Anti-inflammatory drug balsalazide (as model compounds) besides actual wastewater samples were UV photodegraded using suspended titanium silicon oxide (TiSiO4) or UV/H2O2/O2 systems. The photodegradation was favourable in the pH 8–12.8 range. The effect of various parameters such as photocatalyst amount, balsalazide (BSZ) concentration, pH of aqueous solution, irradiation time, addition of H2O2 and temperature on photocatalytic oxidation was investigated. The kinetics of the photocatalytic oxidation of BSZ in aqueous TiSiO4 suspensions was investigated as a function of catalyst loading (2–12 mg/L) and the concentration of BSZ (0.01–0.05 mg/mL) at pH 11.5. The optimum conditions for the degradation of the BSZ have been found as 0.045 mg/mL drug concentration, pH 11.5 and 0.1 g/L catalyst dose. The results indicated that the photocatalytic degradation of BSZ was well described by pseudo-first-order kinetics according to the Langmuir–Hinshelwood model. The effect of temperature on the efficiency of photodegradation of BSZ was also studied in the range 278–298 K. The activation energy was calculated according to Arrhenius plot and was found equal to 24 ± 1 kJ mol−1 for TiSiO4. Decolourization and mineralization of BSZ in the absence of light and/or catalyst were performed to demonstrate that the presence of light and catalyst is essential for the decolourization of this BSZ. This work adds to the global discussion on the role of the advanced oxidation processes in water treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Andreozzi, R., Raffaele, M., & Nicklas, P. (2003). Pharmaceuticals in STP effluents and their solar photodegradation in aquatic environment. Chemosphere, 50, 1319–1330.

    Article  CAS  Google Scholar 

  • Anonymous (1998). Hand book on photochemical oxidation processes, EPA / 625 / B-98 / 004, EPA.

  • Asfaquel Islam, A. S. M., Ferdous, T., & Das, A. K. (2015). Photodegradation of brown CGG dye using ZnO nanoparticles synthesized by ionic template method. Bangladesh: International Conference on Materials, Electronics & Information Engineering.

    Google Scholar 

  • Baran, W., Adamek, E., Sobczak, A., & Makowski, A. (2009). Photocatalytic degradation of sulfa drugs with TiO2, Fe salts and TiO2/FeCl3 in aquatic environment—kinetics and degradation pathway. Applied Catalysis B: Environmental, 90, 516–525.

    Article  CAS  Google Scholar 

  • Bianco Prevot, A., Baiocchi, C., Brussino, M., Pramauro, E., Savarino, P., Augugliaro, V., Marcì, G., & Palmisano, L. (2001). Photocatalytic degradation of acid blue 80 in aqueous solutions containing TiO2 suspensions. Environmental Science and Technology, 35, 971–976.

    Article  Google Scholar 

  • Bing-Nan, L., Woei-Deng, L., & Jie-Chung, L. (1999). Photocatalytic decolorization of methylene blue in aqueous. TiO2 suspension. Environmental. Engineering Science, 16, 165–175.

    Article  Google Scholar 

  • Blanco, J., & Malato, S. (2003). Solar photocatalysis and water treatment: detoxification and disinfection, (vol 2 of Solar Energy Conversion and Photoenergy Systems). UNESCO Publishing.

  • Britton, H. T. S. (1956). Hydrogen ions (p. 1). New York: D Van Nostrand Company.

    Google Scholar 

  • Buser, H. R., Poiger, T., & Muller, M. D. (1999). Occurence and environmental behaviour of chiral pharmaceutical drug ibuprofen in surface waters and in wastewater. Environmental Science and Technology, 33, 2529–2535.

    Article  CAS  Google Scholar 

  • Byrappa, K., Subramani, A. K., Ananda, S., Lokanatha Rai, K. M., Dinesh, R., & Yoshimura, M. (2006). Photocatalytic degradationof rhodamine B dye using hydrothermally synthesized ZnO. Bulletin of Materials Science, 29, 433–438.

    Article  CAS  Google Scholar 

  • Cahill, J. D., Furlong, E. T., Burkhardt, M. R., Kolpin, D., & Anderson, L. G. (2004). Solid-phase extraction and high-performance liquid chromatography-electrospray ionization mass spectrometry. Journal of Chromatography A, 1041, 171–180.

    Article  CAS  Google Scholar 

  • Castiglioni, S., Bagnati, R., Fanelli, R., Pomati, F., Calamari, D., & Zuccato, E. (2006). Effects of a complex mixture of therapeutic drugs at environmental levels on human embryonic cells. Environmental Science and Technology, 40, 357–363.

    Article  CAS  Google Scholar 

  • Chun, H., & Yizhong, W. (1999). Decolorization and biodegradability of photocatalytic treated azo dyes and wool textile wastewater. Chemosphere, 39, 2107–2115.

    Article  Google Scholar 

  • Clara, M., Kreuzinger, N., Strenn, B., Gans, O., & Kroiss, H. (2005). Biodegradation of 2, 4-dicholophenoxyacetic acid using an acidogenic anaerobic sequencing batch reactor. Water Research, 39, 97–106.

    Article  CAS  Google Scholar 

  • Cleuvers, M. (2003). Aquatic ecotoxicity of pharmaceuticals including the assessment of combination effects. Toxicology Letters, 142, 185–194.

    Article  CAS  Google Scholar 

  • Cleuvers, M. (2004). Mixture toxicity of the anti-inflammatory drugs diclofenac, ibuprofen, naproxen and acetylsalicylic acid. Ecotoxicology and Environmental Safety, 59, 309–315.

    Article  CAS  Google Scholar 

  • Daneshvar, N., Rabbani, M., Modirshahla, N., & Behnajady, M. A. (2004). Kinetic modeling of photocatalytic degradation of Acid Red 27 in UV/TiO2 process. Journal of Photochemistry and Photobiology A, 168, 39–45.

    Article  CAS  Google Scholar 

  • Doll, T. E., & Frimmel, F. H. (2003). Fate of pharmaceuticals—photodegradation by simulated solar UV-light. Chemosphere, 52, 1757–1769.

    Article  CAS  Google Scholar 

  • Faisal, M., Abu Tariq, M., & Muneer, M. (2007). Photocatalysed degradation of two selected dyes in UV-irradiated aqueous suspension of titania. Dyes and Pigments, 72, 233–239.

    Article  CAS  Google Scholar 

  • Fox, M., & Dulay, M. (1993). Heterogeneous photocatalysis. Chemistry Review, 93, 341–357.

    Article  CAS  Google Scholar 

  • Gaya, U. I., & Abdullah, A. H. (2008). Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. Journal of Photochemistry and Photobiology C: Chemical Review, 9, 1–12.

    Article  CAS  Google Scholar 

  • Giahi, M., Badalpoor, N., Habibi, S., & Taghavi, H. (2013). Synthesis of CuO/ZnO nanoparticles and their application for photocatalytic degradation of lidocaine HCl by the trial-and-error and Taguchi methods. Bulletin Korean Chemical Society, 34, 2176–2182.

    Article  CAS  Google Scholar 

  • Giger, W., Alder, A. C., Golet, E. M., Kohler, H. P. E., McArdell, C. S., Molnar, E., Siegrist, H., & Suter, M. J. F. (2003). Occurrence and fate of antibiotics as trace contaminants in wastewaters, sewage sludges, and surface waters. Chimia, 57, 485–491.

    Article  CAS  Google Scholar 

  • Giles, C. H., D’Silva, A. P., & Easton, I. A. (1974). A general treatment and classification of the solute adsorption isotherm. Journal of Colloid Interface Science, 47, 755–765.

    Article  CAS  Google Scholar 

  • Gupta, V. K., & Nayak, A. (2012). Cadmium removal and recovery from aqueous solutions by novel adsorbents prepared from orange peel and Fe2O3 nanoparticles. Chemical Engineering Journal, 180, 81–90.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Srivastava, S. K., Mohan, D., & Sharma, S. (1998). Design parameters for fixed bed reactors of activated carbon developed from fertilizer waste for the removal of some heavy metal ions. Waste Management, 17, 517–522.

    Article  Google Scholar 

  • Gupta, V. K., Jain, R., Mittal, A., Mathur, M., & Sikarwar, S. (2007). Photochemical degradation of hazardous dye-safaranin-T using TiO2 catalyst. Journal of Colloid and Interface Science, 309, 460–465.

    Article  Google Scholar 

  • Gupta, V. K., Agarwal, S., & Saleh, T. A. (2011a). Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal. Journal of Hazardous Materials, 185, 17–23.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Agarwal, S., & Saleh, T. A. (2011b). Chromium removal by combining the magnetic properties of iron oxide with adsorption properties of carbon nanotubes. Water Research, 45, 2207–2212.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Jain, R., Nayak, A., Agarwal, S., & Shrivastava, M. (2011c). Removal of the hazardous dye-tartrazine by photodegradation on titanium dioxide surface. Materials Science and Engineering C, 31, 1062–1067.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Ali, I., Saleh, T. A., Nayak, A., & Agarwal, S. (2012a). Chemical treatment technologies for waste-water recycling—an overview. RSC Advances, 2, 6380–6388.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Jain, R., Mittal, A., Saleh, T. A., Nayak, A., Agarwal, S., & Sikarwar, S. (2012b). Photo-catalytic degradation of toxic dye amaranth on TiO2/UV in aqueous suspensions. Materials Science and Engineering C, 32, 12–17.

    Article  CAS  Google Scholar 

  • Halling-Sørensen, B., Nors Nielsen, S., Lanzky, P. F., Ingerslev, F., Holten Lutzhøft, H. C., & Jørgensen, S. E. (1998). Occurrence, fate and effects of pharmaceutical substances in the environment—a review. Chemosphere, 36, 357–393.

    Article  Google Scholar 

  • Halmann, M. M. (1996). Photodegradation of water pollutants. Boca Raton, Florida: CRC Press.

    Google Scholar 

  • He, Z., Song, S., Zhou, H., Ying, H., & Chen, J. (2007). C.I. reactive black 5 decolorization by combined sonolysis and ozonation. Ultrasonics Sonochemistry, 14, 298–304.

    Article  CAS  Google Scholar 

  • Heberer, T. (2002). Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicology Letters, 131, 5–17.

    Article  CAS  Google Scholar 

  • Jain, R., & Sikarwar, S. (2006). Photocatalytic and adsorption studies on the removal of dye Congo red from wastewater. International Journal of Environment Pollution, 27, 158–178.

    Article  CAS  Google Scholar 

  • Jain, A. K., Gupta, V. K., Bhatnagar, A., & Suhas, C. (2003). A comparative study of adsorbents prepared from industrial wastes for removal of dyes. Separation Science and Technology, 38, 463–481.

    Article  CAS  Google Scholar 

  • Jain, R., Mittal, A., Mathur, M., & Sikarwar, S. (2007a). Removal of the hazardous dye rhodamine B through photocatalytic and adsorption treatments. Journal of Environmental Management, 85, 956–964.

    Article  CAS  Google Scholar 

  • Jain, R., Varshney, S., & Sikarwar, S. (2007b). Electrochemical techniques for the removal of Reactofix Golden Yellow 3 RFN from industrial waste. Journal of Colloid and Interface Science, 313, 248–253.

    Article  CAS  Google Scholar 

  • Jjemba, P. K. (2006). Excretion and ecotoxicity of pharmaceutical and personal care products in the environment. Ecotoxicology and Environmental Safety, 63, 113–130.

    Article  CAS  Google Scholar 

  • Joss, A., Keller, E., Alder, A. C., Göbel, A., McArdell, C. S., Ternes, T., & Siegrist, H. (2005). Removal of pharmaceuticals and fragrances in biological wastewater treatment. Water Research, 39, 3139–3152.

    Article  CAS  Google Scholar 

  • Kansal, S. K., Kundu, P., Sood, S., Lamba, R., Umar, A., & Mehtab, S. K. (2014). Photocatalytic degradation of the antibiotic levofloxacin using highly crystalline TiO2 nanoparticles. New Journal of Chemistry, 38, 3220–3226.

    Article  CAS  Google Scholar 

  • Karthikeyan, S., Gupta, V. K., Ramasamy, B., Titus, A., & Sekaran, G. (2012). A new approach for the degradation of high concentration of aromatic amine by heterocatalytic Fenton oxidation: kinetic and spectroscopic studies. Journal of Molecular Liquids, 173, 153–163.

    Article  CAS  Google Scholar 

  • Khani, H., Rofouei, M. K., Arab, P., Gupta, V. K., & Vafaei, Z. (2010). Multi-walled carbon nanotubes-ionic liquid-carbon paste electrode as a super selectivity sensor: application to potentiometric monitoring of mercury ion(II). Journal of Hazardous Materials, 183, 402–409.

    Article  CAS  Google Scholar 

  • Kolpin, D. W., Furlong, E. T., Meyer, M. T., Thurman, E. M., Zaugg, S. D., Barber, L. B., & Buxton, H. T. (2002). Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: a national reconnaissance. Environmental Science and Technology, 36, 1202–1211.

    Article  CAS  Google Scholar 

  • Konstantinou, I. K., Sakkas, V. A., & Albanis, T. A. (2002). Photocatalytic degradation of propachlor in aqueous TiO2 suspensions. Determination of the reaction pathway and identification of intermediate products by various analytical methods. Water Research, 36, 2733–2742.

    Article  CAS  Google Scholar 

  • Kositzi, M., Poulios, I., Samara, K., Tsatsaroni, E., & Darakas, E. (2007). Photocatalytic oxidation of cibacron yellow LS-R. Journal of Hazardous Materials, 146, 680–685.

    Article  CAS  Google Scholar 

  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of American Chemical Society, 40, 1361–1403.

    Article  CAS  Google Scholar 

  • Linden, K. G., Rosenfeldt, E. J., & Kullman, S. W. (2007). UV/H2O2 degradation of endocrine-disrupting chemicals in water evaluated via toxicity assays. Water Science Technology, 55, 313–319.

    Article  CAS  Google Scholar 

  • Marci, G., Addamo, M., Augugliaro, V., Coluccia, S., Garcia-Lopez, E., Loddo, V., Martra, G., Palmisano, L., & Schiavello, M. (2003). Photocatalytic oxidation of toluene on irradiated TiO2: comparison of degradation performance in humidified air, in water and in water containing a zwitterionic surfactant. Journal of Photochemistry and Photobiology A: Chemistry, 160, 105–114.

    Article  CAS  Google Scholar 

  • Metcalfe, C. D., Koenig, B. G., Bennie, D. T., Servos, M., Ternes, T. A., & Hirsch, R. (2003a). Occurrence of neutral and acidic drugs in the effluents of Canadian sewage treatment plants. Environmental Toxicology Chemistry, 22, 2872–2880.

    Article  CAS  Google Scholar 

  • Metcalfe, C. D., Miao, X. S., Koenig, B. G., & Struger, J. (2003b). Distribution of acidic and neutral drugs in surface waters near sewage treatment plants in the lower Great Lakes, Canada. Environmental Toxicology and Chemistry, 22, 2881–2889.

    Article  CAS  Google Scholar 

  • Mittal, A., Kaur, D., Malviya, A., Mittal, J., & Gupta, V. K. (2009). Desorption studies on the removal of coloring agent phenol red from wastewater using waste materials as adsorbents. Journal of Colloid and Interface Science, 337, 345–354.

    Article  CAS  Google Scholar 

  • Mittal, A., Mittal, J., Malviya, A., Kaur, D., & Gupta, V. K. (2010a). Decoloration treatment of a hazardous triarylmethane dye, Light Green SF (Yellowish) by waste material adsorbents. Journal of Colloid and Interface Science, 342, 518–527.

    Article  CAS  Google Scholar 

  • Mittal, A., Mittal, J., Malviya, A., & Gupta, V. K. (2010b). Removal and recovery of Chrysoidine Y from aqueous solutions by waste materials. Journal of Colloid and Interface Science, 344, 497–507.

    Article  CAS  Google Scholar 

  • Neppolian, B., Shankar, M. V., & Murugesan, V. (2002). Semiconductor assisted photo-degradation of textile dyes. Journal of Scientific and Industrial Research, 61, 224–230.

    CAS  Google Scholar 

  • Peiró, A. M., Ayllón, J. A., Peral, J., & Doménech, X. (2001). TiO2-photocatalyzed degradation of phenol and ortho-substituted phenolic compounds. Applied Catalysis B: Environmental, 30, 359–373.

    Article  Google Scholar 

  • Pelgrini, R., Peralta-Zamora, P., De-Adarde, A. R., Reyes, J., & Duran, N. (1999). Electrochemically assisted photocatalytic degradation of reactive dyes. Catalysis B: Environmental, 22, 83–90.

    Article  Google Scholar 

  • Petrovic, M., Gonzalez, S., & Barcelo, D. (2003). Analysis and removal of emerging contaminants in wastewater and drinking water. Trends in Analytical Chemistry, 22, 685–696.

    Article  CAS  Google Scholar 

  • Ravina, M., Campanella, L., & Kiwi, K. (2002). Accelerated mineralization of the drug diclofenac via Fenton reactions in a concentric photo-reactor. Water Research, 36, 3553–3560.

    Article  CAS  Google Scholar 

  • Reutergadh, L. B., & Iangphasuk, M. (1997). Photocatalytic decolourization of reactive azo dye: a comparison between TiO2 and CdS photocatalysis. Chemosphere, 35, 585–596.

    Article  Google Scholar 

  • Saleh, T. A., & Gupta, V. K. (2012a). Synthesis and characterization of alumina nano-particles polyamide membrane with enhanced flux rejection performance. Separation and Purification Technology, 89, 245–251.

    Article  CAS  Google Scholar 

  • Saleh, T. A., & Gupta, V. K. (2012b). Photo-catalyzed degradation of hazardous dye methyl orange by use of a composite catalyst consisting of multi-walled carbon nanotubes and titanium dioxide. Journal of Colloid and Interface Science, 371, 101–106.

    Article  CAS  Google Scholar 

  • Saleh, T. A., & Gupta, V. K. (2012c). Column with CNT/magnesium oxide composite for lead(II) removal from water. Environmental Science and Pollution Research, 19(1224–1228), 2012.

    Google Scholar 

  • Saleh, T. A., & Gupta, V. K. (2014). Characteristics and adsorption behaviour of tire derived carbons: a review. Advances in Colloid and Interface Science, 211, 93–101.

    Article  CAS  Google Scholar 

  • Saleh, T. A., Agarwal, S., & Gupta, V. K. (2011). Synthesis of MWCNT/MnO2 and their application for simultaneous oxidation of arsenite and sorption of arsenate. Applied Catalysis B: Environmental, 106, 46–53.

    CAS  Google Scholar 

  • Sauer, T., Neto, G. C., Jose, H. J., & Moreira, R. F. P. M. (2002). Kinetics of photocatalytic degradation of reactive dyes in a TiO2 slurry reactor. Jouranl of Phtochemistry Photobiology, A, 149, 147–154.

    Article  CAS  Google Scholar 

  • Schiavello, M. (1997). Heterogeneous photocatalysis (Vol. 3 of Series in Photoscience and Photoengineering). Chichester, UK: John Wiley & Sons.

    Google Scholar 

  • Sikarwar, S., & Jain, R. (2014). Kinetics and thermodynamic study of balsalazide adsorption by unsaturated polyester resin (UPR): a non-carbon adsorbent. Water Air Soil Pollution, 225, 1842–1852.

    Article  Google Scholar 

  • Sohrabi, M. R., & Ghavami, M. (2008). Photocatalytic degradation of direct red 23 dye using UV/TiO2: effect of operational parameters. Journal of Hazardous Materials, 153, 1235–1239.

    Article  CAS  Google Scholar 

  • Ternes, T. A. (1998). Occurrence of drugs in German sewage treatment plants and rivers. Water Research, 32, 3245–3260.

    Article  CAS  Google Scholar 

  • Vieno, N. M., Tuhkanen, T., & Kronberg, L. (2005). Seasonal variation in the occurrence of pharmaceuticals in effluents from a sewage treatment plant and in the recipient water. Environmental Science and Technology, 39, 8220–8226.

    Article  CAS  Google Scholar 

  • Xu, W., Zhang, G., Li, X., Zou, S., Li, P., Hu, Z., & Li, J. (2007). Occurrence and elimination of antibiotics at four sewage treatment plants in the Pearl River Delta (PRD), South China. Water Research, 41, 4526–4534.

    Article  CAS  Google Scholar 

  • Yargeau, V., Lopata, A., & Metcalfe, C. (2007). Pharmaceuticals in the Yamaska River, Quebec, Canada. Water Quality Research Journal of Canada, 42, 231–239.

    CAS  Google Scholar 

Download references

Acknowledgments

Authors are highly grateful to the University Grants Commission, New Delhi, for providing post doctoral fellowship to one of the authors, Shalini Sikarwar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev Jain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sikarwar, S., Jain, R. Nano Photo Catalytic Degradation of the Pharmaceutical Agent Balsalazide Under UV Slurry Photo Reactor. Water Air Soil Pollut 226, 277 (2015). https://doi.org/10.1007/s11270-015-2531-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2531-2

Keywords

Navigation