Skip to main content
Log in

Arsenic Adsorption and its Fractions on Aquifer Sediment: Effect of pH, Arsenic Species, and Iron/Manganese Minerals

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Effects of pH, As species, and Fe/Mn minerals on the fractions of adsorbed As in aquifer sediments were evaluated. Kinetic data showed that As adsorption was controlled by diffusion through the external film. Isothermal data of both As(III) and As(V) fitted the Langmuir isotherm well, revealing a monolayer adsorption process. Sequential extraction demonstrated that water-soluble As and non-specifically sorbed As were the major fractions of adsorbed As. Assessing the relationship between the Freundlich K F and the increases in the amounts of As fractions showed that the pH played a key role in weakly adsorbed As, especially water-soluble As. Although inorganic As species converted each other during the adsorption processes, more non-specifically sorbed As was adsorbed in As(V)-treated sediment than in As(III)-treated sediment, showing that the electrostatic selectivity controlled the non-specific adsorption. Additionally, specifically sorbed As and As associated with the amorphous phases were predominated by Fe/Mn minerals, especially Fe(III) (hydr)oxides. These results suggested that pH, As species, and Fe/Mn minerals would regulate the As fractions in aquifer sediments, and therefore control As cycling in aquifer systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Amstaetter, K., Borch, T., Karese-casanova, P., & Kappler, A. (2010). Redox transformation of arsenic by Fe(II)-activated goethite (α-FeOOH). Environmental Science & Technology, 44(1), 102–108.

    Article  CAS  Google Scholar 

  • Anawar, H. M., Akai, J., & Sakugawa, H. (2004). Mobilization of arsenic from subsurface sediments by effect of bicarbonate ions in groundwater. Chemosphere, 54(6), 753–762.

    Article  CAS  Google Scholar 

  • Asta, M. P., Cama, J., Martínez, M., & Giménez, J. (2009). Arsenic removal by goethite and jarosite in acidic conditions and its environmental implications. Journal of Hazardous Materials, 171(1–3), 965–972.

    Article  CAS  Google Scholar 

  • Banerjee, K., Amy, G. L., Prevost, M., Nour, S., Jekel, M., Gallagher, P. M., & Blumenschein, C. D. (2008). Kinetic and thermodynamic aspects of adsorption of arsenic onto granular ferric hydroxide (GFH). Water Research, 42(13), 3371–3378.

    Article  CAS  Google Scholar 

  • Campbell, K. M., Malasarn, D., Saltikov, C. W., Newman, D. K., & Hering, J. G. (2006). Simultaneous microbial reduction of iron (III) and arsenic (V) in suspensions of hydrous ferric oxide. Environmental Science & Technology, 40(19), 5950–5955.

    Article  CAS  Google Scholar 

  • Chang, M. Y., & Juang, R. S. (2004). Adsorption of tannic acid, humic acid, and dyes from water using the composite of chitosan and activated clay. Journal of Colloid and Interface Science, 278(1), 18–25.

    Article  CAS  Google Scholar 

  • Costagliola, P., Bardelli, F., Benvenuti, M., Benedetto, F. D., Lattanzi, P., Romanelli, M., Paolieri, M., Rimondi, V., & Vaggelli, G. (2013). Arsenic-bearing calcite in natural travertines: evidence from sequential extraction, μXAS, and μXRF. Environmental Science & Technology, 47(12), 6231–6238.

    CAS  Google Scholar 

  • Deschamps, E., Ciminelli, V. S. T., Weidler, P. G., & Ramos, A. Y. (2003). Arsenic sorption onto soils enriched in Mn and Fe minerals. Clays and Clay Minerals, 51(2), 197–204.

    Article  CAS  Google Scholar 

  • Devesa-Rey, R., Paradelo, R., Díaz-Fierros, F., & Barral, M. T. (2008). Fractionation and bioavailability of arsenic in the bed sediments of the Anllóns River (NW Spain). Water, Air, & Soil Pollution, 195(1), 189–198.

    Article  CAS  Google Scholar 

  • Doušová, B., Martaus, A., Filippi, M., & Koloušek, D. (2008). Stability of arsenic species in soils contaminated naturally and in an anthropogenic manner. Water, Air, & Soil Pollution, 187(1–4), 233–241.

    Google Scholar 

  • Fendorf, S., Eick, M. J., Grossl, P., & Sparks, D. L. (1997). Arsenate and chromate retention mechanisms on goethite. 1. Surface structure. Environmental Science & Technology, 31(2), 315–320.

    Article  CAS  Google Scholar 

  • Fendorf, S., Michael, H. A., & van Geen, A. (2010). Spatial and temporal variations of groundwater arsenic in South and Southeast Asia. Science, 328(5982), 1123–1127.

    Article  CAS  Google Scholar 

  • Fritzsche, A., Rennert, T., & Totsche, K. U. (2011). Arsenic strongly associates with ferrihydrite colloids formed in a soil effluent. Environmental Pollution, 159(5), 1398–1405.

    Article  CAS  Google Scholar 

  • Gao, X. B., Su, C. L., Wang, Y. X., & Hu, Q. H. (2013). Mobility of arsenic in aquifer sediments at Datong Basin, northern China: effect of bicarbonate and phosphate. Journal of Geochemical Exploration, 135(5), 93–103.

    Article  CAS  Google Scholar 

  • Giral, M., Zagury, G. J., Deschênes, L., & Blouin, J. (2010). Comparison of four extraction procedures to assess arsenate and arsenite species in contaminated soils. Environmental Pollution, 158(5), 1890–1898.

    Article  CAS  Google Scholar 

  • Goldberg, S., & Johnstonm, C. T. (2001). Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modelling. Journal of Colloid and Interface Science, 234(1), 204–216.

    Article  CAS  Google Scholar 

  • Gunduz, O., Simsek, C., & Hasozbek, A. (2010). Arsenic pollution in the groundwater of Simav Plain, Turkey: its impact on water quality and human health. Water, Air, & Soil Pollution, 205(1), 43–62.

    Article  CAS  Google Scholar 

  • Guo, H. M., Stüben, D., & Berner, Z. (2007). Adsorption of arsenic(III) and arsenic(V) from groundwater using natural siderite as the adsorbent. Journal of Colloid and Interface Science, 315(1), 47–53.

    Article  CAS  Google Scholar 

  • Guo, H. M., Li, Y., & Zhao, K. (2010). Arsenate removal from aqueous solution using synthetic siderite. Journal of Hazardous Materials, 176(1), 174–180.

    Article  CAS  Google Scholar 

  • Guo, H. M., Ren, Y., Liu, Q., Zhao, K., & Li, Y. (2013). Enhancement of arsenic adsorption during mineral transformation from siderite to goethite: mechanism and application. Environmental Science & Technology, 47(2), 1009–1016.

    Article  CAS  Google Scholar 

  • Guo, H. M., Wen, D. G., Liu, Z. Y., Jia, Y. F., & Guo, Q. (2014). A review of high arsenic groundwater in Mainland and Taiwan, China: Distribution, characteristics and geochemical processes. Applied Geochemistry, 41, 196–217.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Saini, V. K., & Jain, N. (2005). Adsorption of As(III) from aqueous solutions by iron oxide-coated sand. Journal of Colloid and Interface Science, 288(1), 55–60.

    Article  CAS  Google Scholar 

  • Han, F. X., Kingery, W. L., Selim, H. M., Gerard, P. D., Cox, M. S., & Oldham, J. L. (2004). Arsenic solubility and distribution in poultrywaste and long-term amended soil. Science of the Total Environment, 320(1), 51–61.

    Article  CAS  Google Scholar 

  • Ho, Y. S. (2004). Citation review of Lagergren kinetic rate equation on adsorption reactions. Scientometrics, 59(1), 171–177.

    Article  CAS  Google Scholar 

  • Ho, Y. S., & Mckay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34(5), 451–465.

    Article  CAS  Google Scholar 

  • Huang, G. X., Chen, Z. Y., Wang, J. C., Sun, J. C., Liu, J. T., & Zhang, Y. (2013). Adsorption of arsenite onto a soil irrigated by sewage. Journal of Geochemical Exploration, 132, 164–172.

    Article  CAS  Google Scholar 

  • Huang, G. X., Chen, Z. Y., Sun, J. C., Liu, F., Wang, J., & Zhang, Y. (2015). Effect of sample pretreatment on the fractionation of arsenic in anoxic soils. Environmental Science and Pollution Research, 22(11), 8367–8374.

    Article  CAS  Google Scholar 

  • Hug, S. J., & Leupin, O. (2003). Iron-catalyzed oxidation of arsenic(III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the Fenton reaction. Environmental Science & Technology, 37(12), 2734–2742.

    Article  CAS  Google Scholar 

  • Islam, F. S., Gault, A. G., Boothman, C., Polya, D. A., Charnock, J. M., Chatterjee, D., & Lloyd, J. R. (2004). Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature, 430(6995), 68–71.

    Article  CAS  Google Scholar 

  • Javed, M. B., Kachanoski, G., & Siddique, T. (2013). A modified sequential extraction method for arsenic fractionation in sediments. Analytica Chimica Acta, 787(17), 102–110.

    Article  CAS  Google Scholar 

  • Jessen, S., Larsen, F., Koch, C. B., & Avin, E. (2005). Sorption and desorption of arsenic to ferrihydrite in a sand filter. Environmental Science & Technology, 39(20), 8045–8051.

    Article  CAS  Google Scholar 

  • Katsoyiannis, I. A., Ruettimann, T., & Hug, S. J. (2008). pH dependence of Fenton reagent generation and As(III) oxidation and removal by corrosion of zero valent iron in aerated water. Environmental Science & Technology, 42(19), 7424–7430.

    Article  CAS  Google Scholar 

  • Keon, N. E., Swartz, C. H., Brabander, D. J., Harveyand, C., & Hemond, H. F. (2001). Validation of an arsenic sequential extraction method for evaluating mobility in sediments. Environmental Science & Technology, 35(13), 2778–2784.

    Article  CAS  Google Scholar 

  • Kim, E. J., Yoo, J., & Baek, K. (2014). Arsenic speciation and bioaccessibility in arsenic-contaminated soils: sequential extraction and mineralogical investigation. Environmental Pollution, 186, 29–35.

    Article  CAS  Google Scholar 

  • Kosmulski, M. (2009). Compilation of PZC and IEP of sparingly soluble metal oxides and hydroxides from literature. Advances in Colloid and Interface Science, 152(1), 14–25.

    Article  CAS  Google Scholar 

  • Kumar, K. V., Ramamurthi, V., & Sivanesan, S. (2005). Modeling the mechanism involved during the sorption of methylene blue onto fly ash. Journal of Colloid and Interface Science, 284(1), 14–21.

    Article  CAS  Google Scholar 

  • Lenz, C., Behrends, T., Jilbert, T., Silveira, M., & Slomp, C. P. (2014). Redox-dependent changes in manganese speciation in Baltic Sea sediments from the Holocene Thermal Maximum: An EXAFS, XANES and LA-ICP-MS study. Chemical Geology, 370(26), 49–57.

    Article  CAS  Google Scholar 

  • Liang, Q. Q., & Zhao, D. Y. (2014). Immobilization of arsenate in a sandy loam soil using starch-stabilized magnetite nanoparticles. Journal of Hazardous Materials, 271(30), 16–23.

    Article  CAS  Google Scholar 

  • Livesey, N. T., & Huang, P. M. (1981). Adsorption of arsenate by soils and its relation to selected chemical properties and anions. Soil Science, 131(2), 88–94.

    Article  CAS  Google Scholar 

  • Maji, S. K., Pal, A., Pal, T., & Adak, A. (2007). Adsorption thermodynamics of arsenic on laterite soil. Journal of Surface Science and Technology, 22(3–4), 161–176.

    Google Scholar 

  • Mamindy-Pajany, Y., Hurel, C., Marmier, N., & Roméo, M. (2011). Arsenic (V) adsorption from aqueous solution onto goethite, hematite, magnetite and zero-valent iron: effects of pH, concentration and reversibility. Desalination, 281(17), 93–99.

    Article  CAS  Google Scholar 

  • Manning, B. A., Fendorf, S. E., & Goldberg, S. (1998). Surface structures and stability of arsenic(III) on goethite: spectroscopic evidence for inner-sphere complexes. Environmental Science & Technology, 32(16), 2383–2388.

    Article  CAS  Google Scholar 

  • Manning, B. A., Fendorf, S. E., Bostick, B., & Suarez, D. L. (2002a). Arsenic(III) oxidation and arsenic(V) adsorption reactions on synthetic birnessite. Environmental Science & Technology, 36(5), 976–981.

    Article  CAS  Google Scholar 

  • Manning, B. A., Hunt, M. L., Amrhein, C., & Yarmoff, J. A. (2002b). Arsenic(III) and arsenic(V) reactions with zero valent iron corrosion products. Environmental Science & Technology, 36(24), 5455–5461.

    Article  CAS  Google Scholar 

  • Mohan, D., & Pittman, C. U., Jr. (2007). Arsenic removal from water/wastewater using adsorbents—a critical review. Journal of Hazardous Materials, 142(1–2), 1–53.

    Article  CAS  Google Scholar 

  • Mukherjee, A., Scanlon, B. R., Fryar, A. E., Saha, D., Ghosh, A., Chowdhuri, S., & Mishra, R. (2012). Solute chemistry and arsenic fate in aquifers between the Himalayan foothills and Indian craton (including central Gangetic plain): influence of geology and geomorphology. Geochimica et Cosmochimica Acta, 90(1), 283–302.

    Article  CAS  Google Scholar 

  • Namasivayam, C., & Senthilkumar, S. (1998). Removal of arsenic(V) from aqueous solution using industrial solid waste: adsorption rates and equilibrium studies. Industrial & Engineering Chemistry Research, 37(12), 4816–4822.

    Article  CAS  Google Scholar 

  • Nath, B., Sahu, S. J., Jana, J., Mukherjee-Goswami, A., Roy, S., & Sarkar, M. J. (2008). Hydrochemistry of arsenic-enriched aquifer from rural West Bengal, India: a study of the arsenic exposure and mitigation option. Water, Air, & Soil Pollution, 190(1–4), 95–113.

    Article  CAS  Google Scholar 

  • Nesbitt, H. W., Canning, G. W., & Bancroft, G. M. (1998). XPS study of reductive dissolution of 7 Å-birnessite by H3AsO3, with constraints on reaction mechanism. Geochimica et Cosmochimica Acta, 62(12), 2097–2110.

    Article  CAS  Google Scholar 

  • Ona-Nguema, G., Morin, G., Wang, Y. H., Foster, A. L., Juillot, F., Calas, G., & Brown, G. E. (2010). XANES evidence for rapid arsenic(III) oxidation at magnetite and ferrihydrite surfaces by dissolved O2 via Fe2+-mediated reactions. Environmental Science & Technology, 44(14), 5416–5422.

    Article  CAS  Google Scholar 

  • Oscarson, D. W., Huang, P. M., & Liaw, W. K. (1981). Role of manganese in the oxidation of arsenite by freshwater lake sediments. Clays and Clay Minerals, 29(3), 219–225.

    Article  CAS  Google Scholar 

  • Osorio-López, C., Seco-Reigosa, N., Garrido-Rodríguez, B., Cutillas-Barreiro, L., Arias-Estévez, M., Fernández-Sanjurjo, M. J., Álvarez-Rodríguez, E., & Núñez-Delgado, A. (2014). As(V) adsorption on forest and vineyard soils and pyritic material with or without mussel shell: kinetics and fractionation. Journal of the Taiwan Institute of Chemical Engineers, 45(3), 1007–1014.

    Article  Google Scholar 

  • Partey, F., Norman, D., Ndur, S., & Nartey, R. (2008). Arsenic sorption onto laterite iron concretions: temperature effect. Journal of Surface Science and Technology, 321(2), 493–500.

    CAS  Google Scholar 

  • Poulton, S. W., & Canfield, D. E. (2005). Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates. Chemical Geology, 214(3–4), 209–221.

    Article  CAS  Google Scholar 

  • Qi, Y. Q., & Donahoe, R. J. (2008). The environmental fate of arsenic in surface soil contaminated by historical herbicide application. Science of the Total Environment, 405(1–3), 246–254.

    Article  CAS  Google Scholar 

  • Qiao, J. L., Jiang, Z., Sun, B., Sun, Y. K., Wang, Q., & Guan, X. H. (2012). Arsenate and arsenite removal by FeCl3: effects of pH, As/Fe ratio, initial As concentration and co-existing solutes. Separation and Purification Technology, 92(18), 106–114.

    Article  CAS  Google Scholar 

  • Ramesh, A., Hasegawa, H., Maki, T., & Ueda, K. (2007). Adsorption of inorganic and organic arsenic from aqueous solutions by polymeric Al/Fe modified montmorillonite. Separation and Purification Technology, 56(1), 90–100.

    Article  CAS  Google Scholar 

  • Ravenscroft, P., Brammer, H., & Richards, K. (2009). Arsenic pollution: a global synthesis. Oxford: Wiley-Blackwell.

    Book  Google Scholar 

  • Robert, L. C., Hug, S. J., Ruettimann, T., Billah, M. M., Khan, A. W., & Rahman, M. T. (2004). Arsenic removal with iron(II) and iron(III) in waters with high silicate and phosphate concentrations. Environmental Science & Technology, 38(1), 307–315.

    Article  Google Scholar 

  • Salameh, Y., Al-Lagtah, N., Ahmad, M. N. M., Allen, S. J., & Walker, G. M. (2010). Kinetic and thermodynamic investigations on arsenic adsorption onto dolomitic sorbents. Chemical Engineering Journal, 160(2), 440–446.

    Article  CAS  Google Scholar 

  • Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17(5), 517–568.

    Article  CAS  Google Scholar 

  • Stanic, T., Dakovic, A., Zivanovic, A., Tomasevic-Canovic, M., Dondur, V., & Milicevic, S. (2009). Adsorption of arsenic(V) by iron III-modified natural zeolitic tuff. Environmental Chemistry Letters, 7(2), 161–166.

    Article  CAS  Google Scholar 

  • Teppen, B. J., Yu, C. H., Newton, S. Q., Miller, D. M., & Schtifer, L. (1998). Ab initio investigations pertaining to aluminum in tetrahedral octahedral sites of clay minerals. Journal of Molecular Structure, 445(1–3), 65–88.

    Article  CAS  Google Scholar 

  • Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7), 844–851.

    Article  CAS  Google Scholar 

  • Tufano, K. J., Reyes, C., Saltikov, C. W., & Fendof, S. (2008). Reductive processes controlling arsenic retention: revealing the relative importance of iron and arsenic reduction. Environmental Science & Technology, 42(22), 8283–8289.

    Article  CAS  Google Scholar 

  • Wenzel, W. W., Kirchbaumer, N., Prohaska, T., Stingeder, G., Lombi, E., & Adriano, D. C. (2001). Arsenic fractionation in soils using an improved sequential extraction procedure. Analytica Chimica Acta, 436(2), 309–323.

    Article  CAS  Google Scholar 

  • Ying, C., Kocar, B. D., & Fendorf, S. (2012). Oxidation and competitive retention of arsenic between iron- and manganese oxides Samantha. Geochimica et Cosmochimica Acta, 96(1), 294–303.

    Article  CAS  Google Scholar 

  • Zhang, H., & Selim, H. M. (2005). Kinetics of arsenate adsorption-desorption in soils. Environmental Science & Technology, 39(16), 6101–6108.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study is financially supported by the National Natural Science Foundation of China (Nos. 41222020, 41172224, and 41271479), the Fundamental Research Funds for the Central Universities (No. 2652013028), and the Fok Ying-Tung Education Foundation, China (Grant No. 131017), and Equipment Function Development and Technology Innovation projects of Chinese Academy of Sciences (No. Y3R30020TS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaming Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Guo, H., Lei, M. et al. Arsenic Adsorption and its Fractions on Aquifer Sediment: Effect of pH, Arsenic Species, and Iron/Manganese Minerals. Water Air Soil Pollut 226, 260 (2015). https://doi.org/10.1007/s11270-015-2524-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2524-1

Keywords

Navigation