Skip to main content
Log in

The Effects of Modified Flue Gas Desulfurization Residue on Growth of Sweet Potato and Soil Amelioration

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

We report on treatment and disposal of flue gas desulfurization (FGD) as a solid and hazardous waste. The effects of modified flue gas desulfurization residue (MFGDR) prepared by calcining a mixture of dry/semi-dry FGD residue, potassium feldspar, and/or limestone power on growth of plant and soil amelioration are investigated. The effect of MFGDR on the sweet potato was evaluated by analyzing the soil physiochemical properties and heavy metal speciation in the soil, and the yield, quality, and heavy metal concentrations of the sweet potato. The results indicated that applying MFGDR as soil ameliorant increased total yield by 53.38 %, safety, and the quality of sweet potato. The concentrations of Cd, Cr, Cu, Pb, and As in the sweet potato reduced by 31.34, 70.57, 22.17, 79.49, and 100 %, respectively. The improvements were attributed to enhancement of soil mineral composition contained in MFGDR. The MFGDR could also improve the soil physicochemical properties and decreased phytoavailability of heavy metals. The application of MFGDR in agriculture not only was a potential and useful technique for recycling and utilization of FGD residue, but also had potential benefits for soil amelioration, plant growth, and decrease of heavy metals in grown products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bigham, J. M., Kost, D. A., Stehouwer, R. C., Beeghly, J. H., Fowler, R., Traina, S. J., et al. (2005). Mineralogical and engineering characteristics of dry flue gas desulfurization products. Fuel, 84(14–15), 1839–1848.

    Article  CAS  Google Scholar 

  • Brown, S., Christensen, B., Lombi, E., McLaughlin, M., McGrath, S., Colpaert, J., et al. (2005). An inter-laboratory study to test the ability of amendments to reduce the availability of Cd, Pb, and Zn in situ. Environmental Pollution, 138(1), 34–45.

    Article  CAS  Google Scholar 

  • Chai, N., Shi, L., & Li, J. (2010). Amelioration of acidic soil using the calcined product of dry and semi-dry desulfurization residue with K-feldspar: plant and soil responses and heavy metal assessment. In Bioinformatics and Biomedical Engineering (iCBBE), 2010 4th International Conference on, 2010-01-01 (pp. 1–5): IEEE.

  • Chen, L., Dick, W. A., & Nelson, S. (2001). Flue gas desulfurization by-products additions to acid soil: alfalfa productivity and environmental quality. Environmental Pollution, 114(2), 161–168.

    Article  CAS  Google Scholar 

  • Clark, R. B., Ritchey, K. D., & Baligar, V. C. (2001). Benefits and constraints for use of FGD products on agricultural land. Fuel, 80(6), 821–828.

    Article  CAS  Google Scholar 

  • Ding, J. H., Wen, Y. M., & Shu, Q. (2001). Fraction transformation of cadmium and zinc in soils. Urban Environment & Urban Ecology, 14(2), 47–49.

    Google Scholar 

  • Ding, T. P., Ma, G. R., Shui, M. X., Wan, D. F., & Li, R. H. (2005). Silicon isotope study on rice plants from the Zhejiang province, China. Chemical Geology, 218(1), 41–50.

    Article  CAS  Google Scholar 

  • El-Baky, A., Ahmed, A. A., El-Nemr, M. A., & Zaki, M. F. (2010). Effect of potassium fertilizer and foliar zinc application on yield and quality of sweet potato. Research Journal of Agriculture & Biological Sciences, 6(4), 386–394.

    Google Scholar 

  • Garcı, A. M. A., Chimenos, J. M., Fernández, A. I., Miralles, L., Segarra, M.,., & Espiell, F. (2004). Low-grade MgO used to stabilize heavy metals in highly contaminated soils. Chemosphere, 56(5), 481–491.

    Article  Google Scholar 

  • Geebelen, W., Adriano, D. C., van der Lelie, D., Mench, M., Carleer, R., Clijsters, H., et al. (2003). Selected bioavailability assays to test the efficacy of amendment-induced immobilization of lead in soils. Plant and Soil, 249(1), 217–228.

    Article  CAS  Google Scholar 

  • George, M. S., Lu, G., & Zhou, W. (2002). Genotypic variation for potassium uptake and utilization efficiency in sweet potato (Ipomoea batatas L.). Field Crops Research, 77(1), 7–15.

    Article  Google Scholar 

  • Gu, H. H., Qiu, H., Tian, T., Zhan, S. S., Deng, T. H. B., Chaney, R. L., et al. (2011). Mitigation effects of silicon rich amendments on heavy metal accumulation in rice (Oryza sativa L.) planted on multi-metal contaminated acidic soil. Chemosphere, 83(9), 1234–1240.

    Article  CAS  Google Scholar 

  • He, J. Y., & Shi, L. (2012). Modified flue gas desulfurization residue (MFGDR)—a new type of acidic soil ameliorant and its effect on rice planting. Journal of Cleaner Production, 24, 159–167.

    Article  CAS  Google Scholar 

  • Heasman, L., van der Sloot, H. A., & Quevauviller, P. (1997). Harmonization of leaching/extraction tests (Vol. 70): Elsevier.

  • Hodge, A. (2004). The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytologist, 162(1), 9–24.

    Article  Google Scholar 

  • Hu, B., Han, X. Z., Xiao, Z. H., Lu, Y. L., & Chen, M. (2005). Distribution of potash feldspar resources in China and its exploitation. Geology of Chemical Minerals, 27(1), 25–32.

    Google Scholar 

  • Ila'Ava, V. P., Blamey, P., & Asher, C. J. (2000). Effects of lime and gypsum on growth of sweet potato in two strongly acid soils. Crop and Pasture Science, 51(8), 1031–1037.

    Article  Google Scholar 

  • Jackson, B., & Miller, W. (2000). Soil solution chemistry of a fly ash-, poultry litter-, and sewage sludge-amended soil. Journal of Environmental Quality, 29(2), 430–436.

    Article  CAS  Google Scholar 

  • Jiang, W. J., Pelaez, M., Dionysiou, D. D., Entezari, M. H., Tsoutsou, D., & O’Shea, K. (2013). Chromium (VI) removal by maghemite nanoparticles. Chemical Engineering Journal, 222, 527–533.

    Article  CAS  Google Scholar 

  • Jiang, W. J., Cai, Q., Xu, W., Yang, M. W., Cai, Y., Dionysiou, D. D., et al. (2014). Cr (VI) adsorption and reduction by humic acid coated on magnetite. Environmental Science & Technology, 48(14), 8078–8085.

    Article  CAS  Google Scholar 

  • Jones, L., & Handreck, K. A. (1967). Silica in soils, plants and animals. Advances in Agronomy, 19(1), 107–149.

    Article  CAS  Google Scholar 

  • Kumpiene, J., Lagerkvist, A., & Maurice, C. (2008). Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments—a review. Waste Management, 28(1), 215–225.

    Article  CAS  Google Scholar 

  • Li, G. H., Yang, X., Xu, J. K., & Liu, J. G. (2009). Variations among wetland plants in root acidification and heavy metal uptake. Ecology and Environment Sciences, 18(1), 97–100.

    CAS  Google Scholar 

  • Liu, M. D., & Zhang, Y. L. (2001). Advance in the study of silicon fertility in paddy fields. Chinese Journal of Soil Science, 4, 012.

    Google Scholar 

  • Madejón, E., de Mora, A. P., Felipe, E., Burgos, P., & Cabrera, F. (2006). Soil amendments reduce trace element solubility in a contaminated soil and allow regrowth of natural vegetation. Environmental Pollution, 139(1), 40–52.

    Article  Google Scholar 

  • Porter, S. K., Scheckel, K. G., Impellitteri, C. A., & Ryan, J. A. (2004). Toxic metals in the environment: thermodynamic considerations for possible immobilization strategies for Pb, Cd, As, and Hg. Critical Reviews in Environmental Science and Technology, 34(6), 495–604.

    Article  CAS  Google Scholar 

  • Punshon, T., Adriano, D. C., & Weber, J. T. (2001). Effect of flue gas desulfurization residue on plant establishment and soil and leachate quality. Journal of Environmental Quality, 30(3), 1071–1080.

    Article  CAS  Google Scholar 

  • Sarwar, N., Malhi, S. S., Zia, M. H., Naeem, A., Bibi, S., & Farid, G. (2010). Role of mineral nutrition in minimizing cadmium accumulation by plants. Journal of the Science of Food and Agriculture, 90(6), 925–937.

    CAS  Google Scholar 

  • Seaman, J. C., Arey, J. S., & Bertsch, P. M. (2001). Immobilization of nickel and other metals in contaminated sediments by hydroxyapatite addition. Journal of Environmental Quality, 30(2), 460–469.

    Article  CAS  Google Scholar 

  • Shi, X. H., Zhang, C. C., Wang, H., & Zhang, F. S. (2005). Effect of Si on the distribution of Cd in rice seedlings. Plant and Soil, 272(1–2), 53–60.

    Article  CAS  Google Scholar 

  • Shi, L., Xu, P. Z., Xie, K. Z., Tang, S. H., & Li, Y. L. (2011). Preparation of a modified flue gas desulphurization residue and its effect on pot sorghum growth and acidic soil amelioration. Journal of Hazardous Materials, 192(3), 978–985.

    Article  CAS  Google Scholar 

  • Shuman, L. M. (1999). Organic waste amendments effect on zinc fractions of two soils. Journal of Environmental Quality, 28(5), 1442–1447.

    Article  CAS  Google Scholar 

  • Tang, Z. H., Li, H. M., Zhang, A. J., Shi, X. M., Xu, F., & Sun, J. (2011). Effect of potassium fertilizer application on main quality traits and starch RVA characters of sweet potato. Acta Agriculturae Zhejiangensis, 23(1), 46–51.

    Google Scholar 

  • Tessier, A., Campbell, P. G., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7), 844–851.

    Article  CAS  Google Scholar 

  • Tica, D., Udovic, M., & Lestan, D. (2011). Immobilization of potentially toxic metals using different soil amendments. Chemosphere, 85(4), 577–583.

    Article  CAS  Google Scholar 

  • Wang, S. J., Chen, C. H., Xu, X. C., & Li, Y. J. (2008). Amelioration of alkali soil using flue gas desulfurization byproducts: productivity and environmental quality. Environmental Pollution, 151(1), 200–204.

    Article  CAS  Google Scholar 

  • Wendell, R. R., & Ritchey, K. D. (1996). High-calcium flue gas desulfurization products reduce aluminum toxicity in an Appalachian soil. Journal of Environmental Quality, 25(6), 1401–1410.

    Article  CAS  Google Scholar 

  • Wu, J. B. (2010). Study on tolerance of sweet potato to simple and compounded pollution of cadmium and plumbum. Guangzhou, Guangdong, PR China: Jinan University.

    Google Scholar 

  • Zhou, K. F., Zuo, M. Y., Zheng, M. Q., Shao, D. X., & Chen, M. (2011). Effect of different virus-free sweet potato on yield and quality. Seed, 30(1), 115–118.

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the National Natural Sciences Foundation of China (Project U1301231), Natural Sciences Foundation of Guangdong Province (Project S2011020005187), and Science and Technology Support Plan of Guangzhou (Projects 11A92081308).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Shi, L. The Effects of Modified Flue Gas Desulfurization Residue on Growth of Sweet Potato and Soil Amelioration. Water Air Soil Pollut 226, 245 (2015). https://doi.org/10.1007/s11270-015-2508-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2508-1

Keywords

Navigation