Skip to main content

Advertisement

Log in

Impacts of Initial Fertilizers and Irrigation Systems on Paddy Methanogens and Methane Emission

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Methane production by methanogenic microbes under anaerobic condition is affected by the types of fertilizers, which determine carbon availability, used in rice fields. In addition, irrigation management controls oxygen availability in soil. Thus, irrigation management and types of fertilizers are major driving forces for methane emission in rice fields. While these factors affect paddy microbial communities over the course of cultivation, little is known about the effects of fertilizers and irrigation conditions on initial paddy microbial communities. In this study, we investigated the initial impacts of fertilizers and irrigation systems on paddy microbial communities and methane emission. At early stages of rice cultivation (2 weeks after transplanting 15-day-old rice seedlings), a high amount of methane was emitted from rice fertilized with swine manure. In addition, pre-transplantation flooding increased methane emission by 30 %. Although these conditions did not affect the overall paddy soil microbial communities, 126 operational taxonomic units (OTUs) were found to be significantly more abundant in paddy soils fertilized with swine manure. These OTUs included archaeal methanogenic species and bacterial substrate providers for biomethane production. Shared-OTU analysis with swine fecal microbial communities indicated swine manure as the origin of key methane-producing microbes. In conclusion, the applications of swine manure and permanent flooding irrigation introduce active methane producers and enhance methane emission, respectively, and should therefore be avoided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ali, M. A., Lee, C. H., & Kim, P. J. (2007). Effect of silicate fertilizer on reducing methane emission during rice cultivation. Biology and Fertility of Soils, 44, 597–604.

    Article  Google Scholar 

  • Bao, Q., Xiao, K. Q., Chen, Z., Yao, H. Y., & Zhu, Y. G. (2014). Methane production and methanogenic archaeal communities in two types of paddy soil amended with different amounts of rice straw. FEMS Microbiology Ecology, 88, 372–385.

    Article  CAS  Google Scholar 

  • Bosshard, P. P., Zbinden, R., & Altwegg, M. (2002). Turicibacter sanguinis gen. nov., sp. nov., a novel anaerobic, Gram-positive bacterium. International Journal of Systematic and Evolutionary Microbiology, 52, 1263–1266.

    CAS  Google Scholar 

  • Butterbach-Bahl, K., Papen, H., & Rennenberg, H. (1997). Impact of gas transport through rice cultivars on methane emission from rice paddy fields. Plant, Cell and Environment, 20, 1175–1183.

    Article  CAS  Google Scholar 

  • Cicerone, R. J., & Shetter, J. D. (1981). Sources of atmospheric methane: measurements in rice paddies and a discussion. Journal of Geophysics, 86, 7203–7209.

    Article  CAS  Google Scholar 

  • Cole, J. R., Wang, Q., Cardenas, E., Fish, J., Chai, B., Farris, R. J., Kulam-Syed-Mohideen, A. S., McGarrell, D. M., Marsh, T., Garrity, G. M., & Tiedje, J. M. (2009). The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Research, 37, D141–D145.

    Article  CAS  Google Scholar 

  • Conrad, R. (2007). Microbial ecology of methanogens and methanotrophs. In L. S. Donald (Ed.), Advances in agronomy (pp. 1–63). San Diego: Academic.

    Google Scholar 

  • Conrad, R., Klose, M., Noll, M., Kemnitz, D., & Bodelier, P. L. F. (2008). Soil type links microbial colonization of rice roots to methane emission. Global Change Biology, 14, 657–669.

    Article  Google Scholar 

  • Datta, A., Yeluripati, J. B., Nayak, D. R., Mahata, K. R., Santra, S. C., & Adhya, T. K. (2013). Seasonal variation of methane flux from coastal saline rice field with the application of different organic manures. Atmospheric Environment, 66, 114–122.

    Article  CAS  Google Scholar 

  • De Vrieze, J., Hennebel, T., Boon, N., & Verstraete, W. (2012). Methanosarcina: the rediscovered methanogen for heavy duty biomethanation. Bioresource Technology, 112, 1–9.

    Article  Google Scholar 

  • Degnan, P. H., & Ochman, H. (2012). Illumina-based analysis of microbial community diversity. The ISME Journal, 6, 183–194.

    Article  CAS  Google Scholar 

  • Denman, K., Brasseur, G., Chidthaisong, A., Ciais, P., Cox, P., Dickinson, R. E., Hauglustaine, D., Heinze, C., Holland, E., Jacob, D., Lohmann, U., Ramachandran, S., Dias, P. L. d. S. & Zhang, S. C. W. X. (2007). Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.

  • Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C., & Knight, R. (2011). UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 27, 2194–2200.

    Article  CAS  Google Scholar 

  • Feng, Y., Xu, Y., Yu, Y., Xie, Z., & Lin, X. (2012). Mechanisms of biochar decreasing methane emission from Chinese paddy soils. Soil Biology and Biochemistry, 46, 80–88.

    Article  CAS  Google Scholar 

  • Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W., Haywood, J., Lean, J., Lowe, D. C., Myhre, G., Nganga, J., Prinn, R., Raga, G., Schulz M., & Van Dorland R. (2007). Changes in atmospheric constituents and in radiative forcing. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, H. L. Miller (Eds.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.

  • Han, I., Congeevaram, S., Ki, D. W., Oh, B. T., & Park, J. (2011). Bacterial community analysis of swine manure treated with autothermal thermophilic aerobic digestion. Applied Microbiology and Biotechnology, 89, 835–842.

    Article  CAS  Google Scholar 

  • Hanson, R. S., & Hanson, T. E. (1996). Methanotrophic bacteria. Microbiological Reviews, 60, 439–471.

    CAS  Google Scholar 

  • Hori, T., Noll, M., Igarashi, Y., Friedrich, M. W., & Conrad, R. (2007). Identification of acetate-assimilating microorganisms under methanogenic conditions in anoxic rice field soil by comparative stable isotope probing of RNA. Applied and Environmental Microbiology, 73, 101–109.

    Article  CAS  Google Scholar 

  • Hou, A. X., Wang, Z. P., Chen, G. X., & Patrick, W. H. J. (2000). Effects of organic and N fertilizers on methane production in a Chinese rice soil and its microbiological aspect. Nutrient Cycling in Agroecosystems, 58, 333–338.

    Article  CAS  Google Scholar 

  • IPCC, (2007a). Climate Change 2007: Synthesis Report. In Core Writing Team, Pachauri, R. K. Reisinger, A.(Eds.), Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 104). IPCC: Geneva, Switzerland.

  • IPCC, (2007b). Climate Change 2007: Mitigation of Climate Change. In Metz, B. Davidson, O. R. Bosch, P. R. Dave, R. Meyer, L. A. (Eds.), Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.

  • Jing, Z., Hu, Y., Niu, Q., Liu, Y., Li, Y. Y., & Wang, X. C. (2013). UASB performance and electron competition between methane-producing archaea and sulfate-reducing bacteria in treating sulfate-rich wastewater containing ethanol and acetate. Bioresource Technology, 137, 349–357.

    Article  CAS  Google Scholar 

  • Khan, I. A., Saha, A., Chowdhury, F., Khan, A. I., Uddin, M. J., Begum, Y. A., Riaz, B. K., Islam, S., Ali, M., Luby, S. P., Clemens, J. D., Cravioto, A., & Qadri, F. (2013). Coverage and cost of a large oral cholera vaccination program in a high-risk cholera endemic urban population in Dhaka, Bangladesh. Vaccine, 31, 6058–6064.

    Article  Google Scholar 

  • Khosa, M. K., Sidhu, B. S., & Benbi, D. K. (2011). Methane emission from rice fields in relation to management of irrigation water. Journal of Environmental Biology / Academy of Environmental Biology, India, 32, 169–172.

    Google Scholar 

  • Kögel-Knabner, I., Amelung, W., Cao, Z. H., Fiedler, S., Frenzel, P., & Jahn, R. (2010). Biogeochemistry of paddy soils. Geoderma, 157, 1–14.

    Article  Google Scholar 

  • Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K., & Schloss, P. D. (2013). Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Applied and Environmental Microbiology, 79, 5112–5120.

    Article  CAS  Google Scholar 

  • Kruger, M., & Frenzel, P. (2003). Effect of N-fertilization on CH4 oxidation and production, and consequences for CH4 emissions from microcosms and rice fields. Global Change Biology, 9, 773–784.

    Article  Google Scholar 

  • Liesack, W., Schnell, S., & Revsbech, N. P. (2000). Microbiology of flooded rice paddies. FEMS Microbiology Ecology Reviews, 24, 625–645.

    Article  CAS  Google Scholar 

  • Liou, R. M., Huang, S. N., & Lin, C. W. (2003). Methane emission from fields with differences in nitrogen fertilizers and rice varieties in Taiwan paddy soils. Chemosphere, 50, 237–246.

    Article  CAS  Google Scholar 

  • Ly, P., Jensen, L. S., Bruun, T. B., & de Neergaard, A. (2013). Methane (CH4) and nitrous oxide (N2O) emissions from the system of rice intensification (SRI) under a rain-fed lowland rice ecosystem in Cambodia. Nutrient Cycling in Agroecosystems, 97, 13–27.

    Article  CAS  Google Scholar 

  • Ma, K., Conrad, R., & Lu, Y. (2012). Responses of methanogen mcrA genes and their transcripts to an alternate dry/wet cycle of paddy field soil. Applied and Environmental Microbiology, 78, 445–454.

    Article  CAS  Google Scholar 

  • Nouchi, I., Mariko, S., & Aoki, K. (1990). Mechanism of methane transport from the rhizosphere to the atmosphere through rice plant. Plant Physiology, 94, 59–66.

    Article  CAS  Google Scholar 

  • Paulson, J., Pop, M., & Bravo, H. (2011). Metastats: an improved statistical method for analysis of metagenomic data. Genome Biology, 12, P17.

    Article  Google Scholar 

  • Peng, J., Lu, Z., Rui, J., & Lu, Y. (2008). Dynamics of the methanogenic archaeal community during plant residue decomposition in an anoxic rice field soil. Applied and Environmental Microbiology, 74, 2894–2901.

    Article  CAS  Google Scholar 

  • Pihlatie, M. K., Christiansen, J. R., Aaltonen, H., Korhonen, J. F. J., Nordbo, A., Rasilo, T., Benanti, G., Giebels, M., Helmy, M., Sheehy, J., Jones, S., Juszczak, R., Klefoth, R., Lobo-do-Vale, R., Rosa, A. P., Schreiber, P., Serça, D., Vicca, S., Wolf, B., & Pumpanen, J. (2013). Comparison of static chambers to measure CH4 emissions from soils. Agricultural and Forest Meteorology, 171–172, 124–136.

    Article  Google Scholar 

  • Pramanik, P., & Kim, P. J. (2014). Evaluating changes in cellulolytic bacterial population to explain methane emissions from air-dried and composted manure treated rice paddy soils. Science of the Total Environment, 470–471, 1307–1312.

    Article  Google Scholar 

  • Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., & Glockner, F. O. (2013). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research, 41, D590–D596.

    Article  CAS  Google Scholar 

  • Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., Lesniewski, R. A., Oakley, B. B., Parks, D. H., Robinson, C. J., Sahl, J. W., Stres, B., Thallinger, G. G., Van Horn, D. J., & Weber, C. F. (2009). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75, 7537–7541.

    Article  CAS  Google Scholar 

  • Singh, J. S., Pandey, V. C., Singh, D. P., & Singh, R. P. (2010). Influence of pyrite and farmyard manure on population dynamics of soil methanotroph and rice yield in saline rain-fed paddy field. Agriculture, Ecosystems & Environment, 139, 74–79.

    Article  Google Scholar 

  • Smith, K. S., & Ingram-Smith, C. (2007). Methanosaeta, the forgotten methanogen? Trends in Microbiology, 15, 150–155.

    Article  CAS  Google Scholar 

  • Towprayoon, S., Smakgahn, K., & Poonkaew, S. (2005). Mitigation of methane and nitrous oxide emissions from drained irrigated rice fields. Chemosphere, 59, 1547–1556.

    Article  CAS  Google Scholar 

  • Troy, S. M., Lawlor, P. G., Flynn, C. J. O., & Healy, M. G. (2013). Impact of biochar addition to soil on greenhouse gas emissions following pig manure application. Soil Biology and Biochemistry, 60, 173–181.

    Article  CAS  Google Scholar 

  • Wirth, R., Kovacs, E., Maroti, G., Bagi, Z., Rakhely, G., & Kovacs, K. L. (2012). Characterization of a biogas-producing microbial community by short-read next generation DNA sequencing. Biotechnology for Biofuels, 5, 41.

    Article  CAS  Google Scholar 

  • Woese, C. R., Kandler, O., & Wheelis, M. L. (1990). Towards to a natural system of organisms. Proposal for the domains Archaea, Bacteria and Eucarya. Proceedings of the National Academy of Sciences of the United States of America, 87, 44576–44579.

    Google Scholar 

  • Yuan, Q., Pump, J., & Conrad, R. (2013). Straw application in paddy soil enhances methane production also from other carbon sources. Biogeosciences Discussions, 10, 14169–14193.

    Article  Google Scholar 

  • Yusuf, R. O., Noor, Z. Z., Abba, A. H., Hassan, M. A. A., & Din, M. F. M. (2012). Methane emission by sectors: a comprehensive review of emission sources and mitigation methods. Renewable and Sustainable Energy Reviews, 16, 5059–5070.

    Article  CAS  Google Scholar 

  • Zhang, P., Zheng, J., Pan, G., Zhang, X., Li, L., & Tippkotter, R. (2007). Changes in microbial community structure and function within particle size fractions of a paddy soil under different long-term fertilization treatments from the Tai Lake region, China. Colloids and Surfaces, B: Biointerfaces, 58, 264–270.

    Article  CAS  Google Scholar 

  • Zhang, J., Kobert, K., Flouri, T., & Stamatakis, A. (2014). PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics, 30, 614–620.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Kenneth Widmer for the helpful comments and editing the manuscript. This work was supported by the Korea Science and Engineering Foundation (KOSEF) grant funded by the Korean government (MOST) (No. 2013R1A1A1008910) and International Environmental Analysis and Education Center operating United Nations University and Gwangju Institute of Science and Technology Joint Programme on Science and Technology for Sustainability in 2013, and Vietnam National Foundation for Science and Technology Development (NAFOSTED- No 105.09-2011.21).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuya Unno.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Figure S1

(PPTX 66 kb)

Figure S2

(PPTX 96 kb)

Table S1

(PPTX 48 kb)

Table S2

(PPTX 53 kb)

Table S3

(PPTX 64 kb)

Table S4

(PPTX 78 kb)

Table S5

(PPTX 66 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, S.G., Guevarra, R.B., Kim, J. et al. Impacts of Initial Fertilizers and Irrigation Systems on Paddy Methanogens and Methane Emission. Water Air Soil Pollut 226, 309 (2015). https://doi.org/10.1007/s11270-015-2501-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2501-8

Keywords

Navigation