Advertisement

Water, Air, & Soil Pollution

, 226:309 | Cite as

Impacts of Initial Fertilizers and Irrigation Systems on Paddy Methanogens and Methane Emission

  • Son G. Nguyen
  • Robin B. Guevarra
  • Jungman Kim
  • Cuong T. Ho
  • Mai V. Trinh
  • Tatsuya Unno
Article

Abstract

Methane production by methanogenic microbes under anaerobic condition is affected by the types of fertilizers, which determine carbon availability, used in rice fields. In addition, irrigation management controls oxygen availability in soil. Thus, irrigation management and types of fertilizers are major driving forces for methane emission in rice fields. While these factors affect paddy microbial communities over the course of cultivation, little is known about the effects of fertilizers and irrigation conditions on initial paddy microbial communities. In this study, we investigated the initial impacts of fertilizers and irrigation systems on paddy microbial communities and methane emission. At early stages of rice cultivation (2 weeks after transplanting 15-day-old rice seedlings), a high amount of methane was emitted from rice fertilized with swine manure. In addition, pre-transplantation flooding increased methane emission by 30 %. Although these conditions did not affect the overall paddy soil microbial communities, 126 operational taxonomic units (OTUs) were found to be significantly more abundant in paddy soils fertilized with swine manure. These OTUs included archaeal methanogenic species and bacterial substrate providers for biomethane production. Shared-OTU analysis with swine fecal microbial communities indicated swine manure as the origin of key methane-producing microbes. In conclusion, the applications of swine manure and permanent flooding irrigation introduce active methane producers and enhance methane emission, respectively, and should therefore be avoided.

Keywords

Methane Soil microbiota Methanogens Greenhouse gas Rice 

Notes

Acknowledgments

We thank Dr. Kenneth Widmer for the helpful comments and editing the manuscript. This work was supported by the Korea Science and Engineering Foundation (KOSEF) grant funded by the Korean government (MOST) (No. 2013R1A1A1008910) and International Environmental Analysis and Education Center operating United Nations University and Gwangju Institute of Science and Technology Joint Programme on Science and Technology for Sustainability in 2013, and Vietnam National Foundation for Science and Technology Development (NAFOSTED- No 105.09-2011.21).

Supplementary material

11270_2015_2501_MOESM1_ESM.pptx (67 kb)
Figure S1 (PPTX 66 kb)
11270_2015_2501_MOESM2_ESM.pptx (96 kb)
Figure S2 (PPTX 96 kb)
11270_2015_2501_MOESM3_ESM.pptx (48 kb)
Table S1 (PPTX 48 kb)
11270_2015_2501_MOESM4_ESM.pptx (53 kb)
Table S2 (PPTX 53 kb)
11270_2015_2501_MOESM5_ESM.pptx (65 kb)
Table S3 (PPTX 64 kb)
11270_2015_2501_MOESM6_ESM.pptx (79 kb)
Table S4 (PPTX 78 kb)
11270_2015_2501_MOESM7_ESM.pptx (66 kb)
Table S5 (PPTX 66 kb)

References

  1. Ali, M. A., Lee, C. H., & Kim, P. J. (2007). Effect of silicate fertilizer on reducing methane emission during rice cultivation. Biology and Fertility of Soils, 44, 597–604.CrossRefGoogle Scholar
  2. Bao, Q., Xiao, K. Q., Chen, Z., Yao, H. Y., & Zhu, Y. G. (2014). Methane production and methanogenic archaeal communities in two types of paddy soil amended with different amounts of rice straw. FEMS Microbiology Ecology, 88, 372–385.CrossRefGoogle Scholar
  3. Bosshard, P. P., Zbinden, R., & Altwegg, M. (2002). Turicibacter sanguinis gen. nov., sp. nov., a novel anaerobic, Gram-positive bacterium. International Journal of Systematic and Evolutionary Microbiology, 52, 1263–1266.Google Scholar
  4. Butterbach-Bahl, K., Papen, H., & Rennenberg, H. (1997). Impact of gas transport through rice cultivars on methane emission from rice paddy fields. Plant, Cell and Environment, 20, 1175–1183.CrossRefGoogle Scholar
  5. Cicerone, R. J., & Shetter, J. D. (1981). Sources of atmospheric methane: measurements in rice paddies and a discussion. Journal of Geophysics, 86, 7203–7209.CrossRefGoogle Scholar
  6. Cole, J. R., Wang, Q., Cardenas, E., Fish, J., Chai, B., Farris, R. J., Kulam-Syed-Mohideen, A. S., McGarrell, D. M., Marsh, T., Garrity, G. M., & Tiedje, J. M. (2009). The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Research, 37, D141–D145.CrossRefGoogle Scholar
  7. Conrad, R. (2007). Microbial ecology of methanogens and methanotrophs. In L. S. Donald (Ed.), Advances in agronomy (pp. 1–63). San Diego: Academic.Google Scholar
  8. Conrad, R., Klose, M., Noll, M., Kemnitz, D., & Bodelier, P. L. F. (2008). Soil type links microbial colonization of rice roots to methane emission. Global Change Biology, 14, 657–669.CrossRefGoogle Scholar
  9. Datta, A., Yeluripati, J. B., Nayak, D. R., Mahata, K. R., Santra, S. C., & Adhya, T. K. (2013). Seasonal variation of methane flux from coastal saline rice field with the application of different organic manures. Atmospheric Environment, 66, 114–122.CrossRefGoogle Scholar
  10. De Vrieze, J., Hennebel, T., Boon, N., & Verstraete, W. (2012). Methanosarcina: the rediscovered methanogen for heavy duty biomethanation. Bioresource Technology, 112, 1–9.CrossRefGoogle Scholar
  11. Degnan, P. H., & Ochman, H. (2012). Illumina-based analysis of microbial community diversity. The ISME Journal, 6, 183–194.CrossRefGoogle Scholar
  12. Denman, K., Brasseur, G., Chidthaisong, A., Ciais, P., Cox, P., Dickinson, R. E., Hauglustaine, D., Heinze, C., Holland, E., Jacob, D., Lohmann, U., Ramachandran, S., Dias, P. L. d. S. & Zhang, S. C. W. X. (2007). Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.Google Scholar
  13. Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C., & Knight, R. (2011). UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 27, 2194–2200.CrossRefGoogle Scholar
  14. Feng, Y., Xu, Y., Yu, Y., Xie, Z., & Lin, X. (2012). Mechanisms of biochar decreasing methane emission from Chinese paddy soils. Soil Biology and Biochemistry, 46, 80–88.CrossRefGoogle Scholar
  15. Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W., Haywood, J., Lean, J., Lowe, D. C., Myhre, G., Nganga, J., Prinn, R., Raga, G., Schulz M., & Van Dorland R. (2007). Changes in atmospheric constituents and in radiative forcing. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, H. L. Miller (Eds.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.Google Scholar
  16. Han, I., Congeevaram, S., Ki, D. W., Oh, B. T., & Park, J. (2011). Bacterial community analysis of swine manure treated with autothermal thermophilic aerobic digestion. Applied Microbiology and Biotechnology, 89, 835–842.CrossRefGoogle Scholar
  17. Hanson, R. S., & Hanson, T. E. (1996). Methanotrophic bacteria. Microbiological Reviews, 60, 439–471.Google Scholar
  18. Hori, T., Noll, M., Igarashi, Y., Friedrich, M. W., & Conrad, R. (2007). Identification of acetate-assimilating microorganisms under methanogenic conditions in anoxic rice field soil by comparative stable isotope probing of RNA. Applied and Environmental Microbiology, 73, 101–109.CrossRefGoogle Scholar
  19. Hou, A. X., Wang, Z. P., Chen, G. X., & Patrick, W. H. J. (2000). Effects of organic and N fertilizers on methane production in a Chinese rice soil and its microbiological aspect. Nutrient Cycling in Agroecosystems, 58, 333–338.CrossRefGoogle Scholar
  20. IPCC, (2007a). Climate Change 2007: Synthesis Report. In Core Writing Team, Pachauri, R. K. Reisinger, A.(Eds.), Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 104). IPCC: Geneva, Switzerland.Google Scholar
  21. IPCC, (2007b). Climate Change 2007: Mitigation of Climate Change. In Metz, B. Davidson, O. R. Bosch, P. R. Dave, R. Meyer, L. A. (Eds.), Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.Google Scholar
  22. Jing, Z., Hu, Y., Niu, Q., Liu, Y., Li, Y. Y., & Wang, X. C. (2013). UASB performance and electron competition between methane-producing archaea and sulfate-reducing bacteria in treating sulfate-rich wastewater containing ethanol and acetate. Bioresource Technology, 137, 349–357.CrossRefGoogle Scholar
  23. Khan, I. A., Saha, A., Chowdhury, F., Khan, A. I., Uddin, M. J., Begum, Y. A., Riaz, B. K., Islam, S., Ali, M., Luby, S. P., Clemens, J. D., Cravioto, A., & Qadri, F. (2013). Coverage and cost of a large oral cholera vaccination program in a high-risk cholera endemic urban population in Dhaka, Bangladesh. Vaccine, 31, 6058–6064.CrossRefGoogle Scholar
  24. Khosa, M. K., Sidhu, B. S., & Benbi, D. K. (2011). Methane emission from rice fields in relation to management of irrigation water. Journal of Environmental Biology / Academy of Environmental Biology, India, 32, 169–172.Google Scholar
  25. Kögel-Knabner, I., Amelung, W., Cao, Z. H., Fiedler, S., Frenzel, P., & Jahn, R. (2010). Biogeochemistry of paddy soils. Geoderma, 157, 1–14.CrossRefGoogle Scholar
  26. Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K., & Schloss, P. D. (2013). Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Applied and Environmental Microbiology, 79, 5112–5120.CrossRefGoogle Scholar
  27. Kruger, M., & Frenzel, P. (2003). Effect of N-fertilization on CH4 oxidation and production, and consequences for CH4 emissions from microcosms and rice fields. Global Change Biology, 9, 773–784.CrossRefGoogle Scholar
  28. Liesack, W., Schnell, S., & Revsbech, N. P. (2000). Microbiology of flooded rice paddies. FEMS Microbiology Ecology Reviews, 24, 625–645.CrossRefGoogle Scholar
  29. Liou, R. M., Huang, S. N., & Lin, C. W. (2003). Methane emission from fields with differences in nitrogen fertilizers and rice varieties in Taiwan paddy soils. Chemosphere, 50, 237–246.CrossRefGoogle Scholar
  30. Ly, P., Jensen, L. S., Bruun, T. B., & de Neergaard, A. (2013). Methane (CH4) and nitrous oxide (N2O) emissions from the system of rice intensification (SRI) under a rain-fed lowland rice ecosystem in Cambodia. Nutrient Cycling in Agroecosystems, 97, 13–27.CrossRefGoogle Scholar
  31. Ma, K., Conrad, R., & Lu, Y. (2012). Responses of methanogen mcrA genes and their transcripts to an alternate dry/wet cycle of paddy field soil. Applied and Environmental Microbiology, 78, 445–454.CrossRefGoogle Scholar
  32. Nouchi, I., Mariko, S., & Aoki, K. (1990). Mechanism of methane transport from the rhizosphere to the atmosphere through rice plant. Plant Physiology, 94, 59–66.CrossRefGoogle Scholar
  33. Paulson, J., Pop, M., & Bravo, H. (2011). Metastats: an improved statistical method for analysis of metagenomic data. Genome Biology, 12, P17.CrossRefGoogle Scholar
  34. Peng, J., Lu, Z., Rui, J., & Lu, Y. (2008). Dynamics of the methanogenic archaeal community during plant residue decomposition in an anoxic rice field soil. Applied and Environmental Microbiology, 74, 2894–2901.CrossRefGoogle Scholar
  35. Pihlatie, M. K., Christiansen, J. R., Aaltonen, H., Korhonen, J. F. J., Nordbo, A., Rasilo, T., Benanti, G., Giebels, M., Helmy, M., Sheehy, J., Jones, S., Juszczak, R., Klefoth, R., Lobo-do-Vale, R., Rosa, A. P., Schreiber, P., Serça, D., Vicca, S., Wolf, B., & Pumpanen, J. (2013). Comparison of static chambers to measure CH4 emissions from soils. Agricultural and Forest Meteorology, 171–172, 124–136.CrossRefGoogle Scholar
  36. Pramanik, P., & Kim, P. J. (2014). Evaluating changes in cellulolytic bacterial population to explain methane emissions from air-dried and composted manure treated rice paddy soils. Science of the Total Environment, 470–471, 1307–1312.CrossRefGoogle Scholar
  37. Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., & Glockner, F. O. (2013). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research, 41, D590–D596.CrossRefGoogle Scholar
  38. Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., Lesniewski, R. A., Oakley, B. B., Parks, D. H., Robinson, C. J., Sahl, J. W., Stres, B., Thallinger, G. G., Van Horn, D. J., & Weber, C. F. (2009). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75, 7537–7541.CrossRefGoogle Scholar
  39. Singh, J. S., Pandey, V. C., Singh, D. P., & Singh, R. P. (2010). Influence of pyrite and farmyard manure on population dynamics of soil methanotroph and rice yield in saline rain-fed paddy field. Agriculture, Ecosystems & Environment, 139, 74–79.CrossRefGoogle Scholar
  40. Smith, K. S., & Ingram-Smith, C. (2007). Methanosaeta, the forgotten methanogen? Trends in Microbiology, 15, 150–155.CrossRefGoogle Scholar
  41. Towprayoon, S., Smakgahn, K., & Poonkaew, S. (2005). Mitigation of methane and nitrous oxide emissions from drained irrigated rice fields. Chemosphere, 59, 1547–1556.CrossRefGoogle Scholar
  42. Troy, S. M., Lawlor, P. G., Flynn, C. J. O., & Healy, M. G. (2013). Impact of biochar addition to soil on greenhouse gas emissions following pig manure application. Soil Biology and Biochemistry, 60, 173–181.CrossRefGoogle Scholar
  43. Wirth, R., Kovacs, E., Maroti, G., Bagi, Z., Rakhely, G., & Kovacs, K. L. (2012). Characterization of a biogas-producing microbial community by short-read next generation DNA sequencing. Biotechnology for Biofuels, 5, 41.CrossRefGoogle Scholar
  44. Woese, C. R., Kandler, O., & Wheelis, M. L. (1990). Towards to a natural system of organisms. Proposal for the domains Archaea, Bacteria and Eucarya. Proceedings of the National Academy of Sciences of the United States of America, 87, 44576–44579.Google Scholar
  45. Yuan, Q., Pump, J., & Conrad, R. (2013). Straw application in paddy soil enhances methane production also from other carbon sources. Biogeosciences Discussions, 10, 14169–14193.CrossRefGoogle Scholar
  46. Yusuf, R. O., Noor, Z. Z., Abba, A. H., Hassan, M. A. A., & Din, M. F. M. (2012). Methane emission by sectors: a comprehensive review of emission sources and mitigation methods. Renewable and Sustainable Energy Reviews, 16, 5059–5070.CrossRefGoogle Scholar
  47. Zhang, P., Zheng, J., Pan, G., Zhang, X., Li, L., & Tippkotter, R. (2007). Changes in microbial community structure and function within particle size fractions of a paddy soil under different long-term fertilization treatments from the Tai Lake region, China. Colloids and Surfaces, B: Biointerfaces, 58, 264–270.CrossRefGoogle Scholar
  48. Zhang, J., Kobert, K., Flouri, T., & Stamatakis, A. (2014). PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics, 30, 614–620.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Son G. Nguyen
    • 1
    • 2
  • Robin B. Guevarra
    • 1
  • Jungman Kim
    • 1
  • Cuong T. Ho
    • 3
  • Mai V. Trinh
    • 4
  • Tatsuya Unno
    • 1
  1. 1.Faculty of Biotechnology, College of Applied Life Science, SARIJeju National UniversityJejuRepublic of Korea
  2. 2.Institute of Ecology and Biological ResourcesVietnam Academy of Science and TechnologyCau GiayVietnam
  3. 3.Institute of Environmental TechnologyVietnam Academy of Science and Technology (VAST)Cau GiayVietnam
  4. 4.Institute for Agricultural EnvironmentSouth Tu Liem DistrictVietnam

Personalised recommendations