Advertisement

Water, Air, & Soil Pollution

, 226:317 | Cite as

Production of Volatile Fatty Acids during the Hydrolysis and Acidogenesis of Pistia stratiotes Using Ruminal Fluid

  • H. Hernández-García
  • E. J. OlguínEmail author
  • G. Sánchez-Galván
  • O. Monroy-Hermosillo
Article

Abstract

Aquatic plant biomass has been shown to have a great potential for biogas production. The use of ruminal fluid has been shown to improve the degradation of the lignocellulosic material with its conversion into volatile fatty acids (VFA) during a first phase of hydrolysis–acidogenesis. VFAs are important as the feedstock for methane and hydrogen production in a second phase process within a biorefinery. The objective of this work was to produce a high yield of VFA during a first phase of anaerobic hydrolysis–acidogenesis of Pistia stratiotes biomass assessing the effect of the use of rumen fluid as inoculum and of daily adjustment of pH in batch-operated reactors. One liter anaerobic reactors containing 15 gSV L−1 of P. stratiotes biomass were incubated at 30 ± 2 °C and agitated once a day. The inoculum concentration had no significant effect on the increase in VFA concentration and 20 % (V/V) was used in all treatments. The final average VFA concentration and conversion coefficients from VS to VFA in the inoculated treatment with no pH adjustment (T1) and with pH adjustment (T2) (1817 mgCOD L−1 and 0.1319 mgVFA mgVS−1, respectively) were significantly higher than those found in the treatment with no inoculum (T0). There were no significant differences between T0 and T1 in the VS degradation rate. In contrast, the degradation rate in T2 was significantly higher. Thus, the addition of ruminal fluid promoted the production of VFA, and the pH adjustment had no significant effect on this parameter but did influence the biomass degradation.

Keywords

Anaerobic digestion Lignocellulosic material Floating macrophyte 

Notes

Acknowledgements

This study was funded by the Ministry of Energy (SENER) and the National Council of Science and Technology Mexico (CONACYT) through the grant 152931. Héctor Hernández-García received a scholarship (409049/261224) for graduate studies from CONACYT.

Compliance with Ethical Standards

This research did not involve human participants and/or animals.

Conflict of Interest

The authors declare that they have no competing interests.

References

  1. Abbasi, S. A., & Nipaney, P. C. (1991). Biogas production from the aquatic weed Pistia (Pistia stratiotes). Bioresource Technology, 37(3), 211–214.CrossRefGoogle Scholar
  2. ANKOM Technology. (2011a). Acid detergent fiber in feeds filter bags techniques. Method 5.Google Scholar
  3. ANKOM Technology. (2011b). Neutral detergent fiber in feeds filter bags techniques. Method 6.Google Scholar
  4. ANKOM Technology. (2011c). Acid detergent lignin in beakers. Method 8.Google Scholar
  5. APHA, AWWA, WPCF. (1998). Standard Methods for the Examination of Water and Wastewater. 20th Ed. NY, USA.Google Scholar
  6. Awuah, E., Anohene, F., Asante, K., Lubberding, H., & Gijzen, H. (2001). Environmental conditions and pathogen removal in macrophyte- and algal-based domestic wastewater treatment systems. Water Science and Technology, 44(6), 11–18.Google Scholar
  7. Barnes, S. P., & Keller, J. (2004). Anaerobic rumen SBR for degradation of cellulosic material. Water Science and Technology, 50(10), 305–311.Google Scholar
  8. Bayané, A., & Guiot, S. R. (2011). Animal digestive strategies versus anaerobic digestion bioprocesses for biogas production from lignocellulosic biomass. Reviews in Environmental Science and Biotechnology, 10(1), 43–62.CrossRefGoogle Scholar
  9. Benerjee, A., & Matai, S. (1990). Composition of Indian aquatic plants in relation to utilization as animal forage. Journal of Aquatic Plant Management, 28(15), 69–73.Google Scholar
  10. Carranco, M. E., Castillo, R. M., Escamilla, A., Martínez, M., Pérez-Gil, F., & Stephan, E. (2002). Composición química, extracción de proteína foliar y perfil de aminoácidos de siete plantas acuáticas. Revista Cubana de Ciencia Agrícola, 36(3), 247–258.Google Scholar
  11. Chang, H. N., Kim, N.-J., Kang, J., & Jeong, C. M. (2010). Biomass-derived volatile fatty acid platform for fuels and chemicals. Biotechnology and Bioprocess Engineering, 15(1), 1–10.CrossRefGoogle Scholar
  12. Chen, Y., Cheng, J. J., & Creamer, K. S. (2008). Inhibition of anaerobic digestion process: a review. Bioresource Technology, 99(10), 4044–4064.CrossRefGoogle Scholar
  13. Contreras, P. A., & Noro, M. (2010). Rumen: morfología, trastornos y modulación de la actividad fermentativa. Valdivia: América.Google Scholar
  14. Cysneiros, D., Banks, C. J., Heaven, S., & Karatzas K-A, G. (2012). The role of phase separation and feed cycle length in leach beds coupled to methanogenic reactors for digestion of a solid substrate (part 1): optimisation of reactors’ performance. Bioresource Technology, 103(1), 56–63.CrossRefGoogle Scholar
  15. Dijkstra, J., Ellis, J. L., Kebreab, E., Strathe, A. B., López, S., France, J., et al. (2012). Ruminal pH regulation and nutritional consequiences of low pH. Animal Feed Science and Technology, 172(1–2), 22–33.CrossRefGoogle Scholar
  16. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350–356.CrossRefGoogle Scholar
  17. Durán, U., Gómez, J., Monroy, O., & Ramírez, F. (2011). The effect of vinyl acetate in acetoclastic methanogenesis. Bioresource Technology, 102(2), 1644–1648.CrossRefGoogle Scholar
  18. Fezzani, B., & Cheikh, R. B. (2010). Two-phase anaerobic co-digestion of olive mill wastes in semi-continuous digesters at mesophilic temperature. Bioresource Technology, 101(6), 1628–1634.CrossRefGoogle Scholar
  19. HACH. (2000a). Chemical oxygen demand, Reactor digestion method. Method 8000.Google Scholar
  20. HACH. (2000b). Volatile acids, Esterification method. Method 8196.Google Scholar
  21. Henry-Silva, G. G., & Camargo, A. F. M. (2002). Valor nutritivo de macrófitas aquáticas flutuantes (Eichhornia crassipes, Pistia stratiotes e Salvinia molesta) utilizadas no tratamento de efluentes de aqüicultura. Maringá: Acta Scientiarum, 24(37), 519–526.Google Scholar
  22. Hu, Z.-H., & Yu, H.-Q. (2006). Anaerobic digestion of cattail by rumen cultures. Waste Management, 26(11), 1222–1228.CrossRefGoogle Scholar
  23. Hu, Z.-H., Yu, H.-Q., & Zheng, J.-C. (2006). Application of response surface methodology for optimization of acidogenesis of cattail by rumen cultures. Bioresource Technology, 97(16), 2103–2109.CrossRefGoogle Scholar
  24. Hu, Z. H., Yu, H. Q., Yue, Z. B., Harada, H., & Li, Y. Y. (2007). Kinetic analysis of anaerobic digestion of cattail by rumen microbes in a modified UASB reactor. Biochemical Engineering Journal, 37(2), 219–225.CrossRefGoogle Scholar
  25. Ince, O. (1998). Performance of a two-phase anaerobic digestion system when treating dairy waster. Water Research, 32(9), 2707–2713.CrossRefGoogle Scholar
  26. Islas, J., Manzini, F., & Masera, O. (2007). A prospective study of bioenergy use in Mexico. Energy, 32(12), 2306–2320.CrossRefGoogle Scholar
  27. Jensen, P. D., Hardin, M. T., & Clarke, W. P. (2009). Effect of biomass concentration and inoculum source on the rate of anaerobic cellulose solubilization. Bioresource Technology, 100(21), 5219–5225.CrossRefGoogle Scholar
  28. Lehtomäki, A. (2006). Biogas production from energy crops and crop residues. Jyväskylä: University of Jyväskylä.Google Scholar
  29. Lettinga, G. (1995). Anaerobic digestion and wastewater treatment systems. Antonie Van Leeuwenhoek, 67(1), 3–28.CrossRefGoogle Scholar
  30. Lu, Q., He, Z. L., Graetz, D. A., Stoffella, P. J., & Yang, X. (2010). Phytoremediation to remove nutrients and improve eutrophic stormwaters using water lettuce (Pistia stratiotes L.). Environmental Science and Pollution Research, 17(1), 84–96.CrossRefGoogle Scholar
  31. Mouriño, F., Akkarawongsa, R., & Weimer, P. J. (2001). Initial pH as a determinant of cellulose digestion rate by mixed ruminal microorganisms in vitro. Journal of Dairy Science, 84(4), 848–859.CrossRefGoogle Scholar
  32. Nipaney, P. C., & Panholzer, M. B. (1987). Influence of temperature on biogas production from Pistia stratiotes. Biological Wastes, 19(4), 267–274.CrossRefGoogle Scholar
  33. Nizami, A. S., & Murphy, J. D. (2010). What type of digester configurations should be employed to produce biomethane from grass silage? Renewable and Sustainable Energy Reviews, 14(6), 1558–1568.CrossRefGoogle Scholar
  34. Olguín, E. J. (2012). Dual purpose microalgae–bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a Biorefinery. Biotechnology Advances, 30(5), 1031–1046.CrossRefGoogle Scholar
  35. Olguín, E. J., Sánchez-Galván, G., Pérez-Pérez, T., & Pérez-Orozco, A. (2005). Surface adsorption, intracellular acumulation and compartmentalization of Pb(II) in batch-operated lagoons with Salvinia minima as affected by environmental conditions, EDTA and nutrients. Journal Industrial Microbiology & Biotechnology, 32(11–12), 577–586.CrossRefGoogle Scholar
  36. Olguín, E. J., Sánchez-Galván, G., & Pérez-Pérez, T. (2007). Assessment of the Phytoremediation potential of Salvinia minima Baker compared to Spirodela polyrrhiza in high-strength organic wastewater. Water Air and Soil Pollution, 181(1–4), 135–147.CrossRefGoogle Scholar
  37. Olguín, E. J., González-Portela, R. E., Sánchez-Galván, G., Zamora-Castro, J. E., & Owen, T. (2010). Contaminación de ríos urbanos: El caso de la subcuenca del Río Sordo en Xalapa, Veracruz, México. Revista Latinoamericana de Biotecnología Ambiental y Algal, 1(2), 178–190.Google Scholar
  38. O'Sullivan, C., Rounsefell, B., Grinham, A., Clarke, W., & Udy, J. (2010). Anaerobic digestion of harvested aquatic weeds: water hyacinth (Eichhornia crassipes), cabomba (Cabomba Caroliniana) and salvinia (Salvinia molesta). Ecological Engineering, 36(10), 1459–1468.CrossRefGoogle Scholar
  39. Procházka, J., Mrázek, J., Strosová, L., Fliegerová, K., Zábranská, J., & Dohányos, M. (2012). Enhanced biogas yield from energy crops with rumen anaerobic fungi. Engineering in Life Sciences, 12(3), 343–351.CrossRefGoogle Scholar
  40. Rodríguez, R., Julio, C., & Palma, J. (2000). Valor nutritivo del repollito de agua (Pistia stratiotes L.) y su posible uso en la alimentación animal. Zootecnia Tropical, 18(2), 213–226.Google Scholar
  41. Russell, J. B., & Wilson, D. B. (1996). Why are ruminal cellulolytic bacteria unable to digest cellulose at low pH? Journal of Dairy Science, 79(8), 1503–1509.CrossRefGoogle Scholar
  42. Sánchez-Galván, G., Mercado, F. J., & Olguín, E. J. (2013). Leaves and roots of Pistia stratiotes as sorbent materials for the removal of crude oil from saline solutions. Water Air Soil Pollution, 224, 1421–1433.CrossRefGoogle Scholar
  43. Shen, F., Yuan, H., Pang, Y., Chen, S., Zhu, B., Zou, D., Liu, Y., Ma, J., Yu, L., & Li, X. (2013). Performances of anaerobic co-digestion of fruit & vegetable waste (FVW) and food waste (FW): Single-phase vs. two-phase. Bioresource Technology, 144, 80–85.CrossRefGoogle Scholar
  44. Siegert, I., & Banks, C. (2005). The effect of volatile fatty acid additions on the anaerobic digestion of cellulose and glucose in batch reactors. Process Biochemistry, 40(11), 3412–3418.CrossRefGoogle Scholar
  45. Sooknah, R. D., & Wilkie, A. C. (2004). Nutrient removal by floating aquatic macrophytes cultured in anaerobically digested flushed dairy manure wastewater. Ecological Engineering, 22(1), 27–44.CrossRefGoogle Scholar
  46. Sträuber, H., Schröder, M., & Kleinsteuber, S. (2012). Metabolic and microbial community dynamics during the hydrolytic and acidogenic fermentation in a leach-bed process. Energy Sustainability and Society, 2(1), 1–10.CrossRefGoogle Scholar
  47. Vavilin, V. A., Fernandez, B., Palatsi, J., & Flotats, X. (2008). Hydrolysis kinetics in anaerobic degradation of particulate organic material. An owerview. Waste Management, 28(6), 939–951.CrossRefGoogle Scholar
  48. Yue Z.B., Yu H.Q., Harada H., Li Y.Y., (2007a). Optimization of anaerobic acidogenesis of an aquatic plant, Canna indica L., by rumen cultures. Water Research, 41(11), 2361–2370Google Scholar
  49. Yue, Z.-B., Yu, H.-Q., & Wang, Z.-L. (2007b). Anaerobic digestion of cattail with rumen culture in the presence of heavy metals. Bioresource Technology, 98(4), 781–786.CrossRefGoogle Scholar
  50. Yue, Z.-B., Wang, J., Liu, X.-M., & Yu, H.-Q. (2012). Comparison of rumen microorganisms and digester sludge dominated anaerobic digestion processes for aquatic plants. Renewable Energy, 46, 255–258.CrossRefGoogle Scholar
  51. Yue, Z.-B., Li, W.-W., & Yu, H.-Q. (2013). Application of rumen microorganisms for anaerobic bioconversion of lignocellulosic biomass. Bioresource Technology, 128, 738–744.CrossRefGoogle Scholar
  52. Zennaki, Z., Zaid, A., Bentaya, K., & Boulif, M. (1997). Optimization of anaerobic digestion of cattle manure effect of its association with the aquatic weed pistia (Pistia stratiotes). Tropicultura, 15(2), 51–55.Google Scholar
  53. Zhao, B.-H., Yue, Z.-B., Ni, B.-J., Mu, Y., Yu, H.-Q., & Harada, H. (2009). Modeling anaerobic digestion of aquatic plants by rumen cultures: cattail as an example. Water Research, 43(7), 2047–2055.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • H. Hernández-García
    • 1
  • E. J. Olguín
    • 1
    Email author
  • G. Sánchez-Galván
    • 1
  • O. Monroy-Hermosillo
    • 2
  1. 1.Environmental Biotechnology GroupInstitute of EcologyXalapaMexico
  2. 2.Biotechnology DepartmentUniversidad Autónoma MetropolitanaD.F. MéxicoMexico

Personalised recommendations