Skip to main content
Log in

Preparation of Pyridinium-Functionalized Magnetic Adsorbent and Its Application for Nitrate Removal from Aqueous Solution

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

A novel magnetic pyridinium-functionalized mesoporous silica adsorbent (Fe3O4@SiO2@Py-Cl) was synthesized for nitrate removal from aqueous solutions. The adsorption performances were investigated by varying experimental conditions such as pH, contact time, and initial concentration. The adsorbent was characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT-IR) spectroscopy, and magnetic hysteresis loops. The results showed that the adsorption equilibrium could be reached within 30 min and the kinetic data were fitted well by pseudo-second-order and intra-particle diffusion model. The adsorbent exhibited a favorable performance, and its maximum adsorption capacity calculated by the Langmuir isotherm model was 1.755 mmol/g. The nitrate adsorption mechanism was mainly controlled by the material through ion exchange of nitrate with chloridion, as determined by XPS. This study indicated that this novel pyridinium-functionalized mesoporous material had excellent adsorption capacity. Meanwhile, compared with other adsorbents, it could remove nitrate fast and easy to be collected by magnetic separation, showing great potential application for nitrate removal from aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahmad, H. B., Abbas, Y., Hussain, M., Akhtar, N., Ansari, T. M., Zuber, M., Zia, K. M., & Arain, S. A. (2014). Synthesis and application of alumina supported nano zero valent zinc as adsorbent for the removal of arsenic and nitrate. Korean Journal of Chemical Engineering, 31, 284–288.

    Article  CAS  Google Scholar 

  • Alikhani, M., & Moghbeli, M. R. (2014). Ion-exchange polyHIPE type membrane for removing nitrate ions: preparation, characterization, kinetics and adsorption studies. Chemical Engineering Journal, 239, 93–104.

    Article  CAS  Google Scholar 

  • Anirudhan, T. S., & Rauf, T. A. (2013). Adsorption performance of amine functionalized cellulose grafted epichlorohydrin for the removal of nitrate from aqueous solutions. Journal of Industrial and Engineering Chemistry, 19, 1659–1667.

    Article  CAS  Google Scholar 

  • Comba, S., Martin, M., Marchisio, D., Sethi, R., & Barberis, E. (2012). Reduction of nitrate and ammonium adsorption using microscale iron particles and zeolitite. Water, Air, and Soil Pollution, 223, 1079–1089.

    Article  CAS  Google Scholar 

  • Conley, D. J., Paerl, H. W., Howarth, R. W., Boesch, D. F., Seitzinger, S. P., Havens, K. E., Lancelot, C., & Likens, G. E. (2009). Controlling eutrophication: nitrogen and phosphorus. Science, 323, 1014–1015.

    Article  CAS  Google Scholar 

  • Das Gupta, M., Loganathan, P., & Vigneswaran, S. (2012). Adsorptive removal of nitrate and phosphate from water by a purolite ion exchange resin and hydrous ferric oxide columns in series. Separation Science and Technology, 47, 1785–1792.

    Article  Google Scholar 

  • El-Khaiary, M. I. (2007). Kinetics and mechanism of adsorption of methylene blue from aqueous solution by nitric-acid treated water-hyacinth. Journal of Hazardous Materials, 147, 28–36.

    Article  CAS  Google Scholar 

  • Elmidaoui, A., Sahli, M. A. M., Tahaikt, M., Chay, L., Taky, M., Elmghari, M., & Hafsi, M. (2003). Selective nitrate removal by coupling electrodialysis and a bioreactor. Desalination, 153, 389–397.

    Article  CAS  Google Scholar 

  • Fanning, J. C., Brooks, B. C., Hoeglund, A. B., Pelletier, D. A., & Wadford, J. A. (2000). The reduction of nitrate and nitrite ions in basic solution with sodium borohydride in the presence of copper(II) ions. Inorganica Chimica Acta, 310, 115–119.

    Article  CAS  Google Scholar 

  • Ganesan, P., Kamaraj, R., & Vasudevan, S. (2013). Application of isotherm, kinetic and thermodynamic models for the adsorption of nitrate ions on graphene from aqueous solution. Journal of the Taiwan Institute of Chemical Engineers, 44, 808–814.

    Article  CAS  Google Scholar 

  • Halajnia, A., Oustan, S., Najafi, N., Khataee, A. R., & Lakzian, A. (2013). Adsorption-desorption characteristics of nitrate, phosphate and sulfate on Mg-Al layered double hydroxide. Applied Clay Science, 80–81, 305–312.

    Article  Google Scholar 

  • Hamoudi, S., & Belkacemi, K. (2013). Adsorption of nitrate and phosphate ions from aqueous solutions using organically-functionalized silica materials: kinetic modeling. Fuel, 110, 107–113.

    Article  CAS  Google Scholar 

  • Han, P., Kumar, P., & Ong, B. L. (2014). Remediation of nutrient-rich waters using the terrestrial plant, Pandanus amaryllifolius Roxb. Journal of Environmental Sciences (China), 26, 404–414.

    Article  CAS  Google Scholar 

  • Hekmatzadeh, A. A., Karimi-Jashni, A., Talebbeydokhti, N., & Klove, B. (2013). Adsorption kinetics of nitrate ions on ion exchange resin. Desalination, 326, 125–134.

    Article  CAS  Google Scholar 

  • Hernández-Morales, V., Nava, R., Acosta-Silva, Y., Macías-Sánchez, S., Pérez-Bueno, J., & Pawelec, B. (2012). Adsorption of lead (II) on SBA-15 mesoporous molecular sieve functionalized with –NH2 groups. Microporous and Mesoporous Materials, 160, 133–142.

    Article  Google Scholar 

  • Hmida, E. S. B. H., Ouejhani, A., Lalleve, G., Fauvarque, J. F., & Dachraoui, M. (2010). A novel anionic electrodialysis membrane can be used to remove nitrate and nitrite from wastewater. Desalination and Water Treatment, 23, 13–19.

    Article  Google Scholar 

  • Huang, J., Ye, M., Qu, Y. Q., Chu, L. F., Chen, R., He, Q. Z., & Xu, D. F. (2012). Pb (II) removal from aqueous media by EDTA-modified mesoporous silica SBA-15. Journal of Colloid and Interface Science, 385, 137–146.

    Article  CAS  Google Scholar 

  • Idris, S. A. M. (2015). Adsorption, kinetic and thermodynamic studies for manganese extraction from aqueous medium using mesoporous silica. Journal of Colloid and Interface Science, 440, 84–90.

    Article  CAS  Google Scholar 

  • Jeong, J., Hidaka, T., Tsuno, H., & Oda, T. (2006). Development of biological filter as tertiary treatment for effective nitrogen removal: biological filter for tertiary treatment. Water Research, 40, 1127–1136.

    Article  CAS  Google Scholar 

  • Jouan, P.-Y., Peignon, M.-C., Cardinaud, C., & Lemperiere, G. (1993). Characterisation of TiN coatings and of the TiN/Si interface by X-ray photoelectron spectroscopy and Auger electron spectroscopy. Applied Surface Science, 68, 595–603.

    Article  CAS  Google Scholar 

  • Keränen, A., Leiviskä, T., Hormi, O., & Tanskanen, J. (2015). Removal of nitrate by modified pine sawdust: effects of temperature and co-existing anions. Journal of Environmental Management, 147, 46–54.

    Article  Google Scholar 

  • Konno, H., & Yamamoto, Y. (1987). Ylide–metal complexes. XIII. An X-ray photoelectron spectroscopic study of bis(dimethylsulfoxonium methylide)gold chloride. Bulletin of the Chemical Society of Japan, 60, 2561–2564.

    Article  CAS  Google Scholar 

  • Loganathan, P., Vigneswaran, S., & Kandasamy, J. (2013). Enhanced removal of nitrate from water using surface modification of adsorbents—a review. Journal of Environmental Management, 131, 363–374.

    Article  CAS  Google Scholar 

  • Mashhadizadeh, M. H., & Karami, Z. (2011). Solid phase extraction of trace amounts of Ag, Cd, Cu, and Zn in environmental samples using magnetic nanoparticles coated by 3-(trimethoxysilyl)-1-propantiol and modified with 2-amino-5-mercapto-1,3,4-thiadiazole and their determination by ICP-OES. Journal of Hazardous Materials, 190, 1023–1029.

    Article  CAS  Google Scholar 

  • Matusik, J. (2014). Arsenate, orthophosphate, sulfate, and nitrate sorption equilibria and kinetics for halloysite and kaolinites with an induced positive charge. Chemical Engineering Journal, 246, 244–253.

    Article  CAS  Google Scholar 

  • Mischler, J. A., Taylor, P. G., & Townsend, A. R. (2014). Nitrogen limitation of pond ecosystems on the plains of eastern Colorado. Plos One, 9.

  • Mortazavi, S. B., Ramavandi, B., & Moussavi, G. (2011). Chemical reduction kinetics of nitrate in aqueous solution by Mg/Cu bimetallic particles. Environmetal Technology, 32, 251–260.

  • Mouthon-Bello, J., & Zhou, H. (2007). Using submerged membrane bioreactors for biological nutrient removal from municipal wastewater. Progress in Environmental Science and Technology, I, 667–676.

    Google Scholar 

  • Olgun, A., Atar, N., & Wang, S. B. (2013). Batch and column studies of phosphate and nitrate adsorption on waste solids containing boron impurity. Chemical Engineering Journal, 222, 108–119.

    Article  CAS  Google Scholar 

  • Paerl, H. W., Hall, N. S., Peierls, B. L., & Rossignol, K. L. (2014). Evolving paradigms and challenges in estuarine and coastal eutrophication dynamics in a culturally and climatically stressed world. Estuaries and Coasts, 37, 243–258.

    Article  Google Scholar 

  • Ramavandi, B., Mortazavi, S. B., Moussavi, G., Khoshgard, A., & Jahangiri, M. (2011). Experimental investigation of the chemical reduction of nitrate ion in aqueous solution by Mg/Cu bimetallic particles. Reaction Kinetics, Mechanisms and Catalysis, 102, 313–329.

    Article  CAS  Google Scholar 

  • Ren, Y., Abbood, H. A., He, F. B., Peng, H., & Huang, K. X. (2013). Magnetic EDTA-modified chitosan/SiO2/Fe3O4 adsorbent: preparation, characterization, and application in heavy metal adsorption. Chemical Engineering Journal, 226, 300–311.

    Article  CAS  Google Scholar 

  • Ruan, X. D., Schellenger, F., & Hellweger, F. L. (2014). Accounting for nitrogen fixation in simple models of lake nitrogen loading/export. Environmental Science & Technology, 48, 5667–5673.

    Article  CAS  Google Scholar 

  • Sahli, M. A. M., Annouar, S., Mountadar, M., Soufiane, A., & Elmidaoui, A. (2008). Nitrate removal of brackish underground water by chemical adsorption and by electrodialysis. Desalination, 227, 327–333.

    Article  Google Scholar 

  • Singh, S., Barick, K. C., & Bahadur, D. (2011). Surface engineered magnetic nanoparticles for removal of toxic metal ions and bacterial pathogens. Journal of Hazardous Materials, 192, 1539–1547.

    Article  CAS  Google Scholar 

  • Stöber, W., Fink, A., & Bohn, E. (1968). Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science, 26, 62–69.

    Article  Google Scholar 

  • Tavengwa, N. T., Cukrowska, E., & Chimuka, L. (2013). Synthesis, adsorption and selectivity studies of N-propyl quaternized magnetic poly(4-vinylpyridine) for hexavalent chromium. Talanta, 116, 670–677.

    Article  CAS  Google Scholar 

  • Wu, J., Lan, Z., Wang, D., Hao, S., Lin, J., Huang, Y., Yin, S., & Sato, T. (2006). Gel polymer electrolyte based on poly (acrylonitrile-co-styrene) and a novel organic iodide salt for quasi-solid state dye-sensitized solar cell. Electrochimica Acta, 51, 4243–4249.

    Article  CAS  Google Scholar 

  • Xu, X., Gao, B. Y., Tan, X., Zhang, X. X., Yue, Q. Y., Wang, Y., & Li, Q. (2013a). Nitrate adsorption by stratified wheat straw resin in lab-scale columns. Chemical Engineering Journal, 226, 1–6.

    Article  CAS  Google Scholar 

  • Xu, X., Gao, B. Y., Yue, Q. Y., Li, Q., & Wang, Y. (2013b). Nitrate adsorption by multiple biomaterial based resins: application of pilot-scale and lab-scale products. Chemical Engineering Journal, 234, 397–405.

    Article  CAS  Google Scholar 

  • Yuan, Q., Chi, Y., Yu, N. S., Zhao, Y., Yan, W. F., Li, X. T., & Dong, B. (2014). Amino-functionalized magnetic mesoporous microspheres with good adsorption properties. Materials Research Bulletin, 49, 279–284.

    Article  CAS  Google Scholar 

  • Zhang, J. M., Zhai, S. R., Li, S., Xiao, Z. Y., Song, Y., An, Q. D., & Tian, G. (2013a). Pb(II) removal of Fe3O4@SiO2-NH2 core-shell nanomaterials prepared via a controllable sol-gel process. Chemical Engineering Journal, 215, 461–471.

    Article  Google Scholar 

  • Zhang, S. X., Zhang, Y. Y., Liu, J. S., Xu, Q., Xiao, H. Q., Wang, X. Y., Xu, H., & Zhou, J. (2013b). Thiol modified Fe3O4@SiO2 as a robust, high effective, and recycling magnetic sorbent for mercury removal. Chemical Engineering Journal, 226, 30–38.

    Article  CAS  Google Scholar 

  • Zhao, Y. G., Li, J. X., Zhao, L. P., Zhang, S. W., Huang, Y. S., Wu, X. L., & Wang, X. K. (2014). Synthesis of amidoxime-functionalized Fe3O4@SiO2 core-shell magnetic microspheres for highly efficient sorption of U(VI). Chemical Engineering Journal, 235, 275–283.

    Article  CAS  Google Scholar 

  • Zhou, H. Y., Liang, S., Zeng, S. S., & Lei, S. J. (2013). Chemical reduction of nitrate in aqueous solution by iron powder. Environmental Biotechnology and Materials Engineering, 777, 71–76.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 41101288) and Northwest A&F University PhD Degree Scholar Research Projects (No. 2013BSJJ120).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Q. Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, F., Du, H.T., Wang, Q. et al. Preparation of Pyridinium-Functionalized Magnetic Adsorbent and Its Application for Nitrate Removal from Aqueous Solution. Water Air Soil Pollut 226, 212 (2015). https://doi.org/10.1007/s11270-015-2470-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2470-y

Keywords

Navigation