Skip to main content

Advertisement

Log in

Removal of Trace As(V) from Water with the Titanium Dioxide/ACF Composite Electrode

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The novel titanium oxide/active carbon fiber (TiO2/ACF) electrode was prepared, and electrosorptive properties for As(V) in aqueous solution were investigated. The structure of TiO2/ACF was characterized with transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). Furthermore, the As(V) electrosorptive properties of TiO2/ACF electrodes with calcination temperature, ionic species, and loaded amount of TiO2 were measured, and the electrosorption isotherm and kinetics were investigated at the applied voltage of 1.5 V. The optimal load quality of TiO2 was 0.80 g per ACF electrode (length × width × height = 2 cm × 1 cm × 0.4 cm, 0.30 g), and optimum calcination temperature was 450 °C. The maximum electrosorption capacity of TiO2/ACF was 8.09 mg/g, about 200 % higher than that of ACF. Moreover, the electrode performance was stable than other materials such as pure ACF, manganese oxide/ACF, and iron oxides/ACF. It can process 100 ppb As(V) of water to 6 ppb (reach the drinking water standards of WHO), demonstrating that our novel electrode is with potential practical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abhishek, K., Kumar, R. R., Shalini, S., & Srivastava, M. M. (2013). Nanocellulose fibers for biosorption of cadmium, nickel, and lead ions from aqueous solution. Clean Technologies and Environmental Policy, 16, 385–393.

    Google Scholar 

  • Awual, M. R., Hossain, M. A., & Shenashen, M. A. (2013). Evaluating of arsenic (V) removal from water by weak-base anion exchange adsorbents. Environmental Science and Pollution Research, 20(1), 421–430.

    Article  CAS  Google Scholar 

  • Balaji, T., & Matsunaga, H. (2002). Adsorption characteristics of As(III) and As(V) with titanium dioxide loaded amberlite XAD-7 resin. Analytical Sciences, 18, 1345–1349.

    Article  CAS  Google Scholar 

  • Bãn, A., Schafer, A., & Wendt, H. (1998). Fundamentals of electrosorption on activated carbon for wastewater treatment for industrial effluents. Journal of Applied Electrochemistry, 28, 227–236.

    Article  Google Scholar 

  • Chakraborti, D., Mukherjee, S. C., Pati, S., Sengupta, M. K., Rahman, M. M., Chowdhury, U. K., Lodh, D., Chanda, C. R., Chahraborti, A. K., & Basu, G. K. (2003). Arsenic groundwater contamination in Middle Ganga plain, Bihar, India: a future danger. Environmental Health Perspectives, 1(9), 1194–1201.

    Article  Google Scholar 

  • Chang, L. M., Duan, X. Y., & Liu, W. (2011). Preparation and electrosorption desalination performance of activated carbon electrode with titania. Desalination, 270, 285–290.

    Article  CAS  Google Scholar 

  • Chen, C. H., & Jun, C. H. (2013). Electrosorptive removal of copper ions from wastewater by using ordered mesoporous carbon electrodes. Chemical Engineering Journal, 221, 469–475.

    Article  Google Scholar 

  • Chen, Y. P., Peng, L., Zeng, Q. R., Yang, Y., Lei, M., Song, H. J., & Gu, J. D. (2015). Removal of trace Cd (II) from water with the manganese oxides/ACF composite electrode. Clean Technologies and Environmental Policy, 17, 49–57.

  • Cheng, Z., Van, G. A., Seddique, A. A., & Ahmed, K. M. (2005). Limited temporal variability of arsenic concentrations in 20 wells monitored for 3 years in Araihazar, Bangladesh. Environmental Science and Technology, 39(13), 4759–4766.

    Article  CAS  Google Scholar 

  • Choonsoo, K., Jaehan, L., Seoni, K., & Jeyong, Y. (2013). TiO2 sol–gel spray method for carbon electrode fabrication to enhance desalination efficiency of capacitive deionization. Desalination, 342, 70–74.

    Google Scholar 

  • Deng, S., Li, Z., Huang, J., & Yu, G. (2010). Preparation, characterization and application of a Ce Ti oxide adsorbent for enhanced removal of arsenate from water. Journal of Hazardous Materials, 179, 1014–1021.

    Article  CAS  Google Scholar 

  • Gabelich, C. J., Tran, T., & Suffet, I. H. M. (2002). Electrosorption of inorganic salts from aqueous solution using carbon aerogels. Environmental Science and Technology, 36, 3010–3019.

    Article  CAS  Google Scholar 

  • Gao, Y., Pan, L., Li, H., Zhang, Y., Zhang, Z., Chen, Y., & Sun, Z. (2009). Electrosorption behavior of cations with carbon nanotubes and carbon nanofibers composite film electrodes. Thin Solid Films, 517, 1616–1619.

    Article  CAS  Google Scholar 

  • Gerente, C., Lee, V. K. C., Cloirec, P. L., & McKay, G. (2007). Application of chitosan for the removal of metals from wastewaters by adsorption—mechanisms and models review. Environmental Science and Technology, 37(1), 41–127.

    Article  CAS  Google Scholar 

  • Ghurye, G., Clifford, D., & Tripp, A. (2004). Iron coagulation and direct microfiltration to remove arsenic from groundwater. Journal American Water Works Association, 96(4), 143–152.

    CAS  Google Scholar 

  • Hu, X., Ding, Z., Zimmerman, A. R., Wang, S., & Gao, B. (2015). Batch and column sorption of arsenic onto iron-impregnated biochar synthesized through hydrolysis. Water Research, 68, 206–216.

    Article  CAS  Google Scholar 

  • Huang, C. C., & Su, Y. J. (2010). Removal of copper ions from wastewater by adsorption/electrosorption on modified activated carbon cloths. Journal of Hazardous Materials, 175, 477–483.

    Article  CAS  Google Scholar 

  • Jing, C., Meng, X., Calvache, E., & Jiang, G. (2009). Remediation of organic and inorganic arsenic contaminated groundwater using a nanocrystalline TiO2-based adsorbent. Environmental Pollution, 157, 2514–2519.

    Article  CAS  Google Scholar 

  • Kabyemela, B. M., Adschiri, T., Malaluan, R. M., et al. (1999). Glucose and fructose decomposition in subcritical and supercritical water: detailed reaction pathway, mechanisms, and kinetics. Industrial and Engineering Chemistry Research, 38, 2888–2895.

    Article  CAS  Google Scholar 

  • Kadirova, Z. C., Hojamberdiev, M., Katsumata, K., Isobe, I., Matsushita, N., Nakajima, A., & Okada, K. (2014). Photodegradation of gaseous acetaldehyde and methylene blue in aqueous solution with titanium dioxide-loaded activated carbon fiber polymer materials and aquatic plant ecotoxicity tests. Environmental Science and Pollution Research, 21, 4309–4319.

    Article  CAS  Google Scholar 

  • Kahr, G., & Madsen, F. T. (1995). Determination of the cation exchange capacity and the surface area of bentonite, illite and kaolinite by methylene blue adsorption. Applied Clay Science, 9, 327–336.

    Article  CAS  Google Scholar 

  • Kim, Y. J., & Choi, J. H. (2010). Improvement of desalination efficiency in capacitive deionization using a carbon electrode coated with an ion-exchange polymer. Water Research, 44, 990–996.

    Article  CAS  Google Scholar 

  • Li, H. B., Gao, Y., Pan, L. K., Zhang, Y. P., Chen, Y. W., & Sun, Z. (2008). Electrosorptive desalination by carbon nanotubes and nanofibres electrodes and ion-exchange membranes. Water Research, 42(20), 4923–4928.

    Article  CAS  Google Scholar 

  • Li, L. X., Zou, L. D., Song, H. H., & Morris, G. (2009). Ordered mesoporous carbons synthesized by amodified sol–gel process for electrosorptive removal of sodium chloride. Carbon, 47(3), 775–781.

    Article  CAS  Google Scholar 

  • Li, H. B., Zou, L. N., & Pan, L. K. (2010). Novel graphene-like electrodes for capacitive deionization. Environmental Science and Technology, 44, 8692–8697.

    Article  CAS  Google Scholar 

  • Liu, J. P., Zhao, H., Song, X. L., & Li, X. L. (2009). Effects of calcinations temperature on structure of titanium oxide photocatalyst. Norganic Chemicals Industry, 41(9), 37–39.

    CAS  Google Scholar 

  • Liu, X., Ao, H., Xiong, X., Xiao, J., & Liu, J. (2012). Arsenic removal from water by iron-modified bamboo charcoal. Water, Air, & Soil Pollution, 223(3), 1033–1044.

    Article  CAS  Google Scholar 

  • Liu, P. I., Chung, L. C., Ho, C. H., et al. (2015). Effects of activated carbon characteristics on the electrosorption capacity of titanium dioxide/activated carbon composite electrode materials prepared by a microwave-assisted ionothermal synthesis method. Journal of Colloid and Interface Science, 446, 352–358.

    Article  Google Scholar 

  • Morales, K. H., Ryan, L., Kuo, T. L., Wu, M. M., & Chen, C. J. (2000). Risk of internal cancers from arsenic in drinking water. Environmental Health Perspectives, 108(7), 655–661.

    Article  CAS  Google Scholar 

  • Nabi, D., Aslam, I., & Qazi, I. A. (2009). Evaluation of the adsorption potential of titanium dioxide nanoparticles for arsenic removal. Journal of Environmental Sciences, 21, 402–408.

    Article  CAS  Google Scholar 

  • Nickson, R., McArthur, J., Ravenscroft, P., Burgess, W., & Ahmed, K. (2000). Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Applied Geochemistry, 15(4), 403–413.

    Article  CAS  Google Scholar 

  • Pan, L., Wang, X., Gao, Y., Zhang, Y., Chen, Y., & Sun, Z. (2009). Electrosorption of anions with carbon nanotube and nanofibre composite film electrodes. Desalination, 244, 139–143.

    Article  CAS  Google Scholar 

  • Pan, Y. F., Chiou, C. T., & Lin, T. F. (2010). Adsorption of arsenic(V) by iron-oxide-coated diatomite (IOCD). Environmental Science and Pollution Research, 17, 1401–1410.

    Article  CAS  Google Scholar 

  • Pang, S. (2008). Electron transport in the nanostructure film electrodes and application for dye-sensitized solar cells, Ji Lin University.

  • Parga, J. R., Cocke, D. L., & Valenzuela, J. L. (2005). Arsenic removal vis electmcoagulation from heavy metal contaminated groundwater in La Comarca bIgunem Mexico. Journal of Hazardous Materials, 124(1-3), 247–254.

    Article  CAS  Google Scholar 

  • Patel, B. B. (2011). Synthesis, characterization and biological activity of novel imidazoles. Der Pharmacia Lettre, 3, 280–285.

    CAS  Google Scholar 

  • Pena, M., Meng, X. G., Korfiatis, G. P., & Jing, C. Y. (2006). Adsorption mechanism of arsenic on nanocrystalline titanium dioxide. Environmental Science and Technology, 40, 1257–1262.

    Article  CAS  Google Scholar 

  • Peng, L., Yuan, L. L., Yang, X. F., Zhou, S. J., & Huang, X. (2013). Coupling ion-exchangers with inexpensive activated carbon fiber electrodes to enhance the performance of capacitive deionization cells for domestic wastewater desalination. Water Research, 47, 2523–2530.

    Article  Google Scholar 

  • Ravi, J. (2012). Providing safe drinking water: a challenge for humanity. Clean Technologies and Environmental Policy, 14, 1–4.

    Article  Google Scholar 

  • Sevilla, M., & Fuertes, A. B. (2009). The production of carbon materials by hydrothermal carbonization of cellulose. Carbon, 47, 2281–2289.

    Article  CAS  Google Scholar 

  • Smith, A. H., Arroyo, A. P., & Mazumdar, D. N. (2000). Arsenic-induced skin lesions among Atacameno people in northern Chile despite good nutrition and centuries of exposure. Environmental Health Perspectives, 108(7), 617–620.

    CAS  Google Scholar 

  • Tamura, H., Katayama, N., & Furuichi, R. (1996). Modeling of ion-exchange reactions on metal oxides with the Frumkin isotherm. 1. Acid–base and charge characteristics of MnO2, TiO2, Fe3O4, and Al2O3 surfaces and adsorption affinity of alkali metal ions. Environmental Science and Technology, 30(4), 1198–1204.

    Article  CAS  Google Scholar 

  • Thirunavukkarasu, O. S., Viraraghavan, T., & Subramanian, K. S. (2003). Arsenic removal from drinking water using iron oxide-coated sand. Water, Air, and Soil Pollution, 142(1-4), 95–111.

    Article  CAS  Google Scholar 

  • Villar, I., Roldan, S., Ruiz, V., Granda, M., Blanco, C., Meneindez, R., & SantamariÌa, R. (2010). Capacitive deionization of NaCl Solutions with modified activated carbon electrodes. Energy and Fuels, 24, 3329–3333.

    Article  CAS  Google Scholar 

  • WHO (1993). Guidelines for Drinking Water Quality, Vol 1: Recommendations, 2nd ed.; WHO: Geneva.

Download references

Acknowledgments

This project was supported by the Changsha City Science and Technology Project (K1301103-11), National Natural Science Foundation of China (No. 41401260, 21007014), and Natural Science Foundation of Hunan Province (13JJ04068).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Peng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, L., Chen, Y., Dong, H. et al. Removal of Trace As(V) from Water with the Titanium Dioxide/ACF Composite Electrode. Water Air Soil Pollut 226, 203 (2015). https://doi.org/10.1007/s11270-015-2463-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2463-x

Keywords

Navigation