Skip to main content
Log in

Immobilization of Trace Metals in Contaminated Urban Soil Amended with Compost and Biochar

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Urban soil amendment with organic matter can increase the steady state concentration of trace metals in urban soil. Different types of organic matter have different abilities to sorb and retain trace metals. The potential of urban soil amended with compost derived from mixed green and table waste and with maple-wood-derived biochar to retain trace metals (Cu, Zn, Cd, Pb) in the presence of de-icing salt (Na) was studied in a leaching test. Soil amended with compost retained significantly higher concentrations of Zn and Pb, as compared to soil amended with biochar, possibly due to the high cation exchange capacity of compost and its positive effect on soil pH. Indicating high ability for retaining trace metals, compost can bind contaminants originating from urban runoff water percolating through urban soil and provide a healthier medium for street tree growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adhikari, T., & Singh, M. V. (2003). Sorption characteristics of lead and cadmium in some soils of India. Geoderma, 114, 81–92.

    Article  CAS  Google Scholar 

  • Beesley, L., & Dickinson, N. (2011). Carbon and trace element fluxes in the pore water of an urban soil following greenwaste compost, woody and biochar amendments, inoculated with the earthworm Lumbricus terrestris. Soil Biology & Biochemistry, 43, 188–196.

    Article  CAS  Google Scholar 

  • Beesley, L., Moreno-Jiménez, E., & Gomez-Eyles, J. L. (2010). Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environmental Pollution, 158(6), 2282–2287.

  • Beesley, L., Inneh, O. S., Norton, G. J., Moreno-Jimenez, E., Pardo, T., Clemente, R., et al. (2014). Assessing the influence of compost and biochar amendments on the mobility and toxicity of metals and arsenic in a naturally contaminated mine soil. Environmental Pollution, 186, 195–202.

    Article  CAS  Google Scholar 

  • Bolan, N., Kunhikrishnan, A., Thangarajan, R., Kumpiene, J., Park, J., Makino, T., et al. (2014). Remediation of heavy metal(loid)s contaminated soils – To mobilize or to immobilize? Journal of Hazardous Materials, 266, 141–166.

    Article  CAS  Google Scholar 

  • Bouyoucos, G. J. (1936). Directions for Making Mechanical Analysis of Soils by the Hydrometer Method. Soil Science, 42(3), 225–228.

    Article  CAS  Google Scholar 

  • Brümmer, G. W. (1986). Heavy metal species, mobility and availability in soils. In M. Bernhard, F. E. Brinckman, & P. J. Sadler (Eds.), The Importance of Chemical “Speciation” in Environmental Processes (Vol. 33, pp. 169-192, Dahlem Workshop Reports). Berlin: Springer-Verlag.

    Google Scholar 

  • Buchter, B., Davidoff, B., Amacher, M. C., Hinz, C., Iskandar, I. K., & Selim, H. M. (1989). Correlation of Freundlich Kd and n retention parameters with soils and elements. Soil Science, 148(5), 370–379.

    Article  CAS  Google Scholar 

  • Cao, X., Ma, L., Liang, Y., Gao, B., & Harris, W. (2011). Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar. Environmental Science and Technology, 45, 4884–4889.

    Article  CAS  Google Scholar 

  • Cavallaro, N., & McBride, M. B. (1978). Copper and cadmium adsorption characteristics of selected acid and calcareous soils. Soil Science Society of America Journal, 42(4), 550–556.

    Article  CAS  Google Scholar 

  • City of Montreal (1995). Soil standards for transplantation of trees in Montreal tree pits. Standard#2-484. (pp. 2).

  • Clark, S. E., & Pitt, R. (2007). Influencing factors and a proposed evaluation methodology for predicitng groundwater contamination potential from stormwater infiltration activities. Water Environment Research, 79(1), 29–36.

    Article  CAS  Google Scholar 

  • Covelo, E. F., Vega, F. A., & Andrade, M. L. (2007). Heavy metal sorption and desorption capacity of soils containing endogenous contaminants. Journal of Hazardous Materials, 143, 419–430.

    Article  CAS  Google Scholar 

  • Cunningham, M. A., Snyder, E., Yonkin, D., Ross, M., & Elsen, T. (2008). Accumulation of deicing salts in soils in an urban environment. Urban Ecosystems, 11(1), 17–31. doi:10.1007/s11252-007-0031-x.

    Article  Google Scholar 

  • Díaz-Barrientos, E., Madrid, L., Maqueda, C., Morillo, E., Ruiz-Cortes, E., Basallote, E., et al. (2003). Copper and zinc retention by an organically amended soil. Chemosphere, 50, 911–917.

    Article  Google Scholar 

  • Evans, L. J. (1989). Chemistry of metal retention by soils. Environmental Science and Technology, 23(9), 1046–1056.

    Article  CAS  Google Scholar 

  • Göbel, P., Dierkes, C., & Coldewey, W. G. (2007). Storm water runoff concentration matrix for urban areas. Journal of Contaminant Hydrology, 91, 26–42.

    Article  Google Scholar 

  • Green, S. M., Machin, R., & Cresser, M. S. (2008). Effect of long-term changes in soil chemistry induced by road salt applications on N-transformations in roadside soils. Environmental Pollution, 152, 20–31.

    Article  CAS  Google Scholar 

  • Güngör, E. B. Ö., & Bekbölet, M. (2010). Zinc release by humic and fulvic acid as influenced by pH, complexation and DOC sorption. Geoderma, 159, 131–138.

    Article  Google Scholar 

  • Hanauer, T., Jung, S., Felix-Henningsen, P., Schnell, S., & Steffens, D. (2012). Suitability of inorganic and organic amendments for in situ immobilization of Cd, Cu, and Zn in a strongly contaminated Kastanozem of the Mashavera valley, SE Georgia I. Effect of amendments on metal mobility and microbial activity in soil. Journal of Plant Nutrition and Soil Science, 175, 708–720.

    Article  CAS  Google Scholar 

  • Hendershot, W. H., Lalande, H., & Duquette, M. (1993a). Ion exchange and exchangeable cations. In M. R. Carter (Ed.), Soil Sampling and Methods of Analysis (pp. 168–170). Canadian Socirty of Soil Science: CRC Press, Taylor & Francis Group, FL.

  • Hendershot, W. H., Lalande, H., & Duquette, M. (1993b). Soil reaction and exchangeable acidity. In M. R. Carter (Ed.), Soil Sampling and Methods of Analysis (pp. 141–143). Canadian Society of Soil Science: CRC Press, Taylor & Francis Group, FL.

  • Hendershot, W. H., Lalande, H., Reyes, D., & MacDonald, J. D. (2008). Trace element assessment. In M. R. Carter (Ed.), Soil Sampling and Methods of Analysis (2nd ed., pp. 109–119). Canadian Society of Soil Science: CRC Press, Taylor & Francis Group, FL.

  • Houben, D., Evrard, L., & Sonnet, P. (2013a). Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd, Pb and Zn and the biomass production of rapeseed (Brassica napus L.). Biomass and Bioenergy, 57, 196–204.

    Article  CAS  Google Scholar 

  • Houben, D., Evrard, L., & Sonnet, P. (2013b). Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar. Chemosphere, 92, 1450–1457.

    Article  CAS  Google Scholar 

  • Jiang, T.-Y., Jiang, J., Xu, R.-K., & Li, Z. (2012). Adsorption of Pb(II) on variable charge soils amended with rice-straw derived biochar. Chemosphere, 89, 249–256.

    Article  CAS  Google Scholar 

  • Jim, C. Y. (1998). Physical and chemical properties of a Hong Kong roadside soil in relation to urban tree growth. Urban Ecosystems, 2, 171–181.

    Article  Google Scholar 

  • Karaca, A. (2004). Effect of organic wastes on the extractability of cadmium, copper, nickel, and zinc in soil. Geoderma, 122, 297–303.

    Article  CAS  Google Scholar 

  • Karami, N., Clemente, R., Moreno-Jiménez, E., Lepp, N. W., & Beesley, L. (2011). Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass. Journal of Hazardous Materials, 191, 41–48.

    Article  CAS  Google Scholar 

  • Kelly, C. N., Peltz, C. D., Stanton, M., Rutherford, D. W., & Rostad, C. E. (2014). Biochar application to hardrock mine tailings: Soil quality, microbial activity, and toxic element sorption. Applied Geochemistry, 43, 35–48.

    Article  CAS  Google Scholar 

  • Kloss, S., Zehetner, F., Oburger, E., Buecker, J., Kitzler, B., Wenzel, W. W., et al. (2014). Trace element concentrations in leachates and mustard plant tissue (Sinapis alba L.) after biochar application to temperate soils. Science of the Total Environment, 481, 498–508.

    Article  CAS  Google Scholar 

  • Kluge, B., & Wessolek, G. (2012). Heavy metal pattern and solute concentration in soils along the oldest highway of the world – the AVUS Autobahn. Environmental Monitoring and Assessment, 184, 6469–6481.

    Article  CAS  Google Scholar 

  • Kluge, B., Werkenthin, M., & Wessolek, G. (2014). Metal leaching in a highway embankment on field and laboratory scale. Science of the Total Environment, 493, 495–504.

    Article  CAS  Google Scholar 

  • Li, L. Y. (2006). Retention capacity and environmental mobility of Pb in soils along highway corridor. Water, Air, and Soil Pollution, 170, 211–227. doi:10.1007/s11270-005-9002-0.

    Article  CAS  Google Scholar 

  • Li, X., Liu, L., Wang, Y., Luo, G., Chen, X., Yang, X., et al. (2013). Heavy metal contamination of urban soil in an old industrial city (Shenyang) in Northeast China. Geoderma, 192, 50–58.

    Article  CAS  Google Scholar 

  • Li, F., Zhang, Y., Fan, Z., & Oh, K. (2015). Accumulation of de-icing salts and its short-term effect on metal mobility in urban roadside soils. Bulletin of Environmental Contamination and Toxicology. doi:10.1007/s00128-015-1481-0.

    Google Scholar 

  • Linde, M., Öborn, I., & Gustafsson, J. P. (2007). Effects of changed soil conditions on the mobility of trace metals in moderately contaminated urban soils. Water, Air, and Soil Pollution, 183, 69–83. doi:10.1007/s11270-007-9357-5.

    Article  CAS  Google Scholar 

  • Luo, X.-S., Yu, S., & Li, X.-D. (2012). The mobility, bioavailability, and human bioaccessibility of trace metals in urban soils of Hong Kong. Applied Chemistry, 27, 995–1004.

    CAS  Google Scholar 

  • Matos, A. T. D., Fontes, M. P. F., Costa, L. M. D., & Martinez, M. A. (2001). Mobility of heavy metals as related to soil chemical and mineralogical characteristics of Brazilian soils. Environmental Pollution, 111, 429–435.

    Article  Google Scholar 

  • Moreno, A. M., Quintana, J. R., Perez, L., & Parra, J. G. (2006). Factors influencing lead sorption-desorption at variable added metal concentrations in Rhodoxeralfs. Chemosphere, 64, 758–763.

    Article  CAS  Google Scholar 

  • Nelson, S. S., Yonge, D. R., & Barber, M. E. (2009). Effects of road salts on heavy metal mobility in two Eastern Washington soils. Journal of Environmental Engineering, 135, 505–510.

    Article  CAS  Google Scholar 

  • Norrström, A. C. (2005). Metal mobility by de-icing salt from an infiltration trench for highway runoff. Applied Geochemistry, 20, 1907–1919.

    Article  Google Scholar 

  • Öborn, I., & Linde, M. (2001). Solubility and potential mobility of heavy metals in two contaminated urban soils from Stockholm, Sweden. Water, Air, and Soil Pollution, 1, 255–265.

    Article  Google Scholar 

  • Paradelo, R., Villada, A., & Barral, M. T. (2011). Reduction of the short-term availability of copper, lead and zinc in a contaminated soil amended with municipal solid waste compost. Journal of Hazardous Materials, 188, 98–104.

    Article  CAS  Google Scholar 

  • Pardo, T., Bernal, M. P., & Clemente, R. (2014). Efficiency of soil organic and inorganic amendments on the remediation of a contaminated mine soil: I. Effects on trace elements and nutrients solubility and leaching risk. Chemosphere, 107, 121–128.

    Article  CAS  Google Scholar 

  • Park, J. H., Choppala, G. K., Bolan, N. S., Chung, J. W., & Chuasavathi, T. (2011). Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant and Soil, 348, 439–451. doi:10.1007/s11104-011-0948-y.

    Article  CAS  Google Scholar 

  • Rashti, M. R., Esfandbod, M., Adhami, E., & Srivastava, P. (2014). Cadmium desorption behaviour in selected sub-tropical soils: Effects of soil properties. Journal of Geochemical Exploration, 144, 230–236.

    Article  Google Scholar 

  • Reddy, M. R., & Dunn, S. J. (1986). Distribution coefficient for nickel and zinc in soils. Environmental Pollution, 11, 303–313.

    CAS  Google Scholar 

  • Schulte, E. E., Kaufmann, C., & Peter, J. B. (1991). The influence of sample size and heating time on soil weight loss‐on‐ignition. Communications in Soil Science and Plant Analysis, 22(1-2), 159–168. doi:10.1080/00103629109368402.

    Article  Google Scholar 

  • Shaheen, S. M. (2009). Sorption and lability of cadmium and lead in different soils from Egypt and Greece. Geoderma, 153(1-2), 61–68.

    Article  CAS  Google Scholar 

  • Shahid, M., Pinelli, E., & Dumat, C. (2012). Review of Pb availability and toxicity to plants in relation with metal speciation; role of synthetic and natural organic ligands. Journal of Hazardous Materials. doi:10.1016/j.jhazmat.2012.01.060.

    Google Scholar 

  • Sherene, T. (2010). Mobility and transport of heavy metals in polluted soil environment. Biological Forum — An International Journal, 2(2), 112–121.

    Google Scholar 

  • Strawn, D. G., & Sparks, D. L. (2000). Effects of soil organic matter on the kinetics and mechanisms of Pb(II) sorption and desorption in Soil. Soil Science Society American Journal, 64, 144–156.

    Article  CAS  Google Scholar 

  • Strobel, B. W., Hansen, H. C. B., Borggaard, O. K., Andersen, M. K., & Raulund-Rasmussen, K. (2001). Cadmium and copper release kinetics in relation to afforestation of cultivated soil. Geochimica et Cosmochimica Acta, 65(8), 1233–1242. doi:10.1016/S0016-7037(00)00602-5.

  • Trakal, L., Komárek, M., Száková, J., Zemanová, V., & Tlustoš, P. (2011). Biochar application to metal-contaminated soil: Evaluating of Cd, Cu, Pb and Zn sorption behavior using single- and multi-element sorption experiment. Plant, Soil and Environment, 57(8), 372–380.

    CAS  Google Scholar 

  • Uchimiya, M., Lima, I. M., Klasson, K. T., & Wartelle, L. H. (2010). Contaminant immobilization and nutrient release by biochar soil amendment: Roles of natural organic matter. Chemosphere, 80, 935–940.

    Article  CAS  Google Scholar 

  • Waterlot, C., Bidar, G., Pelfrêne, A., Roussel, H., Fourrier, H., & Douay, F. (2013). Contamination, fractionation and availability of metals in urban soils in the vicinity of former lead and zinc smelters, France. Pedosphere, 23(2), 143–159.

    Article  CAS  Google Scholar 

  • Wuana, R. A., & Okieimen, F. E. (2011). Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. International Scholarly Research Network. doi:10.5402/2011/402647.

Download references

Acknowledgments

The authors thank the City of Montreal Transport Department for providing the financial support for this project and Hélène Lalande for the time and effort she has given to support the laboratory work. The authors are also thankful to Dr. Martin Heroux from the Division de service des infrastructures, du transport et de l'environnement of the City of Montreal, and Dr. Barry Husk from Blue Leaf Inc. for providing the required compost and biochar for this project.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Kargar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kargar, M., Clark, O.G., Hendershot, W.H. et al. Immobilization of Trace Metals in Contaminated Urban Soil Amended with Compost and Biochar. Water Air Soil Pollut 226, 191 (2015). https://doi.org/10.1007/s11270-015-2450-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2450-2

Keywords

Navigation