Skip to main content
Log in

Manganese Sand Ore Is an Economical and Effective Catalyst for Ozonation of Organic Contaminants in Petrochemical Wastewater

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Catalytic ozonation process (COP) is a promising advanced oxidation process for petrochemical wastewater (PCW) treatment. However, the lack of economical and effective catalysts limits its application. Manganese sand ore (MSO) was utilized as a heterogeneous catalyst for ozonation of organic contaminants in PCW in this study. The calcined MSO-assisted COP (cMSO-COP) of aniline exhibited greater degradation than natural MSO-assisted COP or single ozonation process (SOP). The cMSO significantly promoted hydroxyl radical-mediated oxidation, decreased the ozonation activation energy by about 20 %, and doubled the reaction rates in comparison with SOP. The cMSO-COP increased the chemical oxygen demand (COD) removal of PCW twofold relative to SOP. The number of polar organic contaminants decreased by 50 % after cMSO-COP treatment. This study demonstrated the potential use of cMSO for efficient ozonation of petrochemical-derived contaminants at low cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altenor, S., Carene, B., Emmanuel, E., Lambert, J., Ehrhardt, J. J., & Gaspard, S. (2009). Adsorption studies of methylene blue and phenol onto vetiver roots activated carbon prepared by chemical activation. Journal of Hazardous Materials, 165, 1029–1039.

    Article  CAS  Google Scholar 

  • Andreozzi, R., Caprio, V., Insola, A., Marotta, R., & Tufano, V. (1998). The ozonation of pyruvic acid in aqueous solutions catalyzed by suspended and dissolved manganese. Water Research, 32, 1492–1496.

    Article  CAS  Google Scholar 

  • Avramescu, S. M., Bradu, C., Udre, I., Mihalache, N., & Ruta, F. (2008). Degradation of oxalic acid from aqueous solutions by ozonation in presence of Ni/Al2O3 catalysts. Catalysis Communication, 9, 2386–2391.

    Article  CAS  Google Scholar 

  • Bader, H., & Hoigni, J. (1981). Determination of ozone in water by the indigo method. Water Research, 15, 449–456.

    Article  CAS  Google Scholar 

  • Buxton, G. V. (1988). Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/•O-) in aqueous solution. Journal of Physical and Chemical Reference Data, 17, 513–886.

    Article  CAS  Google Scholar 

  • Carbajo, M., Rivas, F. J., Beltrán, F. J., Alvarez, P., & Medina, F. (2006). Effects of different catalysts on the ozonation of pyruvic acid in water. Ozone: Science & Engineering, 28, 229–235.

    Article  CAS  Google Scholar 

  • Chen, C., Chen, H., Guo, X., & Yan, G. (2014). Advanced ozone treatment of heavy oil refining wastewater by activated carbon supported iron oxide. Journal of Industrial and Engineering Chemistry, 20, 2782–2791.

    Article  CAS  Google Scholar 

  • Cooper, C., & Burch, R. (1999). An investigation of catalytic ozonation for the oxidation of halocarbons in drinking water preparation. Water Research, 33, 3695–3700.

    Article  CAS  Google Scholar 

  • Delanoë, F., Acedo, B., Karpel, V. L. N., & Legube, B. (2001). Relationship between the structure of Ru/CeO2 catalysts and their activity in the catalytic ozonation of succinic acid aqueous solutions. Applied Catalysis B: Environmental, 29, 315–325.

    Article  Google Scholar 

  • Einaga, H., Teraoka, Y., & Ogat, A. (2011). Benzene oxidation with ozone over manganese oxide supported on zeolite catalysts. Catalysis Today, 164, 571–574.

    Article  CAS  Google Scholar 

  • Ernst, M., Lurot, F., & Schrotter, J. C. (2004). Catalytic ozonation of refractory organic model compounds in aqueous solution by aluminum oxide. Applied Catalysis B: Environmental, 47, 15–25.

    Article  CAS  Google Scholar 

  • Faria, P. C. C., Monteiro, D. C. M., Órfão, J. J. M., & Pereira, M. F. R. (2009). Cerium, manganese and cobalt oxides as catalysts for the ozonation of selected organic compounds. Chemosphere, 74, 818–824.

    Article  CAS  Google Scholar 

  • Faria, P. C. C., Ôrfão, J. J. M., & Pereira, M. F. R. (2008). Activated carbon catalytic ozonation of oxamic and oxalic acids. Applied Catalysis B: Environmental, 79, 237–243.

    Article  CAS  Google Scholar 

  • Fu, J. X., Zhang, D. D., An, N., Wang, F., & Jiang, J. H. (2007). Quartz sand/manganese sand mixed layer media for iron and manganese removal and their influencing factors. China Water & Wastewater, 23, 6–10.

    CAS  Google Scholar 

  • Guo, X., Zhan, Y., Chen, C., Zhao, L., & Guo, S. (2014). The influence of microbial synergistic and antagonistic effects on the performance of refinery wastewater microbial fuel cells. Journal of Power Sources, 251, 229–236.

    Article  CAS  Google Scholar 

  • Gracia, R., Cortes, S., Sarasa, J., Oramad, P., & Ovelleiro, J. L. (2000). TiO2-catalysed ozonation of raw Ebro River water. Water Research, 34, 1525–1532.

    Article  CAS  Google Scholar 

  • Ikhlaq, A., Brown, D. R., & Kasprzyk-Hordern, B. (2013). Mechanisms of catalytic ozonation: an investigation into superoxide ion radical and hydrogen peroxide formation during catalytic ozonation on alumina and zeolites in water. Applied Catalysis B: Environmental, 129, 437–449.

    Article  CAS  Google Scholar 

  • Kang, L., Zhang, M., Liu, Z. H., & Ooi, K. (2007). IR spectra of manganese oxides with either layered or tunnel structures. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 67, 864–869.

    Article  Google Scholar 

  • Kasprzyk-Hordern, B., Ziółek, M., & Nawrocki, J. (2003). Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment. Applied Catalysis B: Environmental, 46, 639–669.

    Article  CAS  Google Scholar 

  • Langlais, B., Reckhow, D. A., & Brink, D. R. (1991). In B. Langlais, D. A. Reckhow, & D. R. Brink (Eds.), Fundamental aspects, in ozone in water treatment: application and engineering. New York: Lewis Publishers.

    Google Scholar 

  • Li, L., Ye, W., Zhang, Q., Sun, F., Lu, P., & Li, X. (2009). Catalytic ozonation of dimethyl phthalate over cerium supported on activated carbon. Journal of Hazardous Materials, 170, 411–416.

    Article  CAS  Google Scholar 

  • Liotta, L. F., Gruttadauria, M., Carlo, G. D., Perrini, G., & Librandod, V. (2009). Catalytic degradation of phenolic substrates: catalysts activity. Journal of Hazardous Materials, 162, 588–608.

    Article  CAS  Google Scholar 

  • Li, F. B., Li, X. Z., Liu, C. S., & Liu, T. X. (2007). Effect of alumina on photocatalytic activity of iron oxides for bisphenol A degradation. Journal of Hazardous Materials, 149, 199–207.

    Article  CAS  Google Scholar 

  • Li, Y., Chen, J., Liu, J., Ma, M., Chen, W., & Li, L. (2010). Activated carbon supported TiO2-photocatalysis doped with Fe ions for continuous treatment of dye wastewater in a dynamic reactor. Journal of Environmental Sciences, 22, 1290–1296.

    Article  CAS  Google Scholar 

  • Lv, A., Hu, C., Nie, Y., & Qu, J. (2010). Catalytic ozonation of toxic pollutants over magnetic cobalt and manganese co-doped-Fe2O3. Applied Catalysis B: Environmental, 100, 62–67.

    Article  CAS  Google Scholar 

  • Ma, J., Sui, M., Zhang, T., & Guan, C. (2005). Effect of pH on MnOx/GAC catalyzed ozonation for degradation of nitrobenzene. Water Research, 39, 779–786.

    Article  CAS  Google Scholar 

  • Moussavi, G., Khosravi, R., & Omran, N. R. (2012). Development of an efficient catalyst from magnetite ore: characterization and catalytic potential in the ozonation of water toxic contaminants. Applied Catalysis A: General, 445–446, 42–49.

    Article  Google Scholar 

  • Muruganandham, M., & Wu, J. J. (2008). Synthesis, characterization and catalytic activity of easily recyclable zinc oxide nanobundles. Applied Catalysis B: Environmental, 80, 32–41.

    Article  CAS  Google Scholar 

  • Nawrocki, J., & Kasprzyk-Hordern, B. (2010). The efficiency and mechanisms of catalytic ozonation. Applied Catalysis B: Environmental, 99, 27–42.

    Article  CAS  Google Scholar 

  • Nesbitt, H. W., & Banerjeed, D. (1998). Interpretation of XPS Mn(2p) spectra of Mn oxyhydroxides and constraints on the mechanism of MnO2 precipitation. American Mineralogist, 83, 305–315.

    CAS  Google Scholar 

  • Park, J., Lee, J. K., & Miyawaki, J. (2011). Catalytic oxidation of polycyclic aromatic (PAHS) over SBA-15 supported metal catalysts. Journal of Industrial and Engineering Chemistry, 17, 271–276.

    Article  CAS  Google Scholar 

  • Qi, F., Xu, B., Zhao, L., Chen, Z., Zhang, L., Sun, D., & Ma, J. (2012). Comparison of the efficiency and mechanism of catalytic ozonation of 2,4,6-trichloroanisole by iron and manganese modified bauxite. Applied Catalysis B: Environmental, 121–122, 171–181.

    Article  Google Scholar 

  • Qi, F., Xu, B., Zhao, L., Chen, Z., Ma, J., Sun, D., Zhang, L., & Wu, F. (2009). Ozonation catalyzed by the raw bauxite for the degradation of 2,4,6-trichloroanisole in drinking water. Journal of Hazardous Materials, 168, 246–252.

    Article  CAS  Google Scholar 

  • Rezaei, E., Soltan, J., Chen, N., & Lin, J. (2013). Effect of noble metals on activity of MnOx/r-alumina catalyst in catalytic ozonation of toluene. Chemical Engineering Journal, 214, 219–228.

    Article  CAS  Google Scholar 

  • Valdés, H., Murillo, F. A., Manoli, J. A., & Zaror, C. A. (2009a). Heterogeneous catalytic ozonation of benzothiazole aqueous solution promoted by volcanic sand. Journal Hazardous Materials, 153, 1036–1042.

    Article  Google Scholar 

  • Valdés, H., Murillo, F. A., Manoli, J. A., & Zaror, C. A. (2009b). Catalytic ozone aqueous decomposition promoted by natural zeolite and volcanic sand. Journal Hazardous Materials, 165, 915–922.

    Article  Google Scholar 

  • Wang, L., Barrington, S., & Kim, J. W. (2007). Biodegradation of pentyl amine and aniline from petrochemical wastewater. Journal of Environmental Management, 83, 191–197.

    Article  CAS  Google Scholar 

  • Wei, L., Guo, S., Yan, G., Chen, C., & Jiang, X. (2010). Electrochemical pretreatment of heavy oil refinery wastewater using a three-dimensional electrode reactor. Electrochimica Acta, 55, 8615–8620.

    Article  CAS  Google Scholar 

  • Yang, C. C., Chang, S. H., Hong, B. Z., Chi, K. H., & Chang, M. B. (2008). Innovative PCDD/F-containing gas stream generating system applied in catalytic decomposition of gaseous dioxins over V2O5-WO3/TiO2-based catalysts. Chemosphere, 73, 890–895.

    Article  CAS  Google Scholar 

  • Yang, Y., Ma, J., Qin, Q., & Zhai, X. (2007). Degradation of nitrobenzene by nano-TiO2 catalyzed ozonation. Journal of Molecular Catalysis A-Chemical, 267, 41–48.

    Article  CAS  Google Scholar 

  • Yuan, B., Xu, J., Li, X., & Fu, M. (2013). Preparation of Si-Al/α-FeOOH catalyst from an iron-containing waste and surface-catalytic oxidation of methylene blue at neutral pH value in the presence of H2O2. Chemical Engineering Journal, 226, 181–188.

    Article  CAS  Google Scholar 

  • Zeng, Y. F., Liu, Z. L., & Qin, Z. Z. (2009). Decolorization of molasses fermentation wastewater by SnO2-catalyzed ozonation. Journal Hazardous Materials, 162, 682–687.

    Article  CAS  Google Scholar 

  • Zhao, L., Ma, J., Sun, Z., & Zhai, X. (2008). Catalytic ozonation for the degradation of nitrobenzene in aqueous solution by ceramic honeycomb-supported manganese. Applied Catalysis B: Environmental, 83, 256–264.

    Article  CAS  Google Scholar 

  • Zhang, T., Li, C., Ma, J., Tian, H., & Qiang, Z. (2008). Surface hydroxyl groups of synthetic ɑ-FeOOH in promoting ·OH generation from aqueous ozone: property and activity relationship. Applied Catalysis B: Environmental, 82, 131–137.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported in part by the National Natural Science Foundation of China (No. 51209216). C.C. was supported by the scholarship from China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunmao Chen or Shaohui Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Yoza, B.A., Chen, H. et al. Manganese Sand Ore Is an Economical and Effective Catalyst for Ozonation of Organic Contaminants in Petrochemical Wastewater. Water Air Soil Pollut 226, 182 (2015). https://doi.org/10.1007/s11270-015-2446-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2446-y

Keywords

Navigation