Skip to main content

Removal of Dissolved Organic Carbon from Oily Produced Water by Adsorption onto Date Seeds: Equilibrium, Kinetic, and Thermodynamic Studies


The feasibility of date seeds as a new low-cost natural adsorbent for the removal of dissolved organic carbon (DOC) from oily produced water was investigated. The aim of this study was to elucidate the mechanism associated with the removal of DOC and to find the best equilibrium isotherms and kinetic models for DOC removal in batch adsorption experiments. The effect of various physicochemical parameters such as initial DOC concentration (18.5–93.5 mg/L), solution pH (4–9), temperature (25–45 °C), and date seeds dosages (0.5–2.0 g) was evaluated. The equilibrium stage was attained after a contact time of 120 min. The maximum DOC removal was 82 % for 93.5 mg/L of DOC concentration. The equilibrium data were well represented by the Langmuir isotherm. The maximum monolayer adsorption capacity of date seeds was found to be 74.62 mg/g. The separation factor, R L, from the Langmuir equation and the Freundlich constant, n, indicated a favorable adsorption. The kinetic studies indicated that the adsorption process follows the pseudo-second-order kinetics. The adsorption of DOC is governed by both surface and pore diffusion. The results revealed that the DOC uptake decreases when temperature and pH increases. The adsorption process has been found exothermic in nature, and the thermodynamic parameters were determined. The Langmuir isotherm model equation was adopted to design a single-stage batch absorber for DOC adsorption onto date seeds. The study demonstrated that date seeds can be considered as a promising low-cost adsorbent for the removal of DOC from oily produced water.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


C e :

Residue DOC concentration at equilibrium (mg/L)

ΔG o :

Gibbs free energy (KJ/mol)

C o :

Initial concentration of DOC (mg/L)

ΔH o :

Change in enthalpy (KJ/mol)

C l :

Final concentration of DOC (mg/L)

ΔS o :

Change in entropy (J/mol K)

q t :

Adsorption capacity at time t (mg/g)

R 2 :

Linear regression coefficient

q e :

Amount of DOC adsorbed at equilibrium (mg/g)

t :

Time (min)

q m :

Maximum adsorption capacity (mg/g)

ρ s :

Particle density of date seed (g/cm3)

t 0.5 :

The half-life time (min0.5)

ρ w :

Density of water (g/cm3)

k id :

Intra-particle diffusion rate constant (mg/g min0.5)

m o :

Mass of oven-dried date seed (g)

k fd :

The film diffusion rate constant

m sw :

Mass air-dried seed + pycnometer + water (g)

K d :

Distribution coefficient

m w :

Mass of water + pycnometer (g)

R L :

Separation factor

ΔS o :

Change in entropy (J/mol K)

K L :

The Langmuir constant (L/mg)

R 2 :

Linear regression coefficient

K f :

Freundlich constant related to adsorption capacity (mg/g)

k 1 :

Pseudo-first-order rate constant (L/min)

k 2 :

Pseudo-second-order rate constant (g/mg min)

n :

Empirical parameter related to the intensity of adsorption

β :

Constant related to adsorption energy


Polanyi potential (KJ2/mol2)


  • Adin, A., Katzhendler, J., Alkaslassy, D., & Rav-Acha, C. (1991). Trihalomethane formation in chlorinated drinking water: a kinetic model. Water Research, 25(7), 797–805.

    CAS  Article  Google Scholar 

  • Ahmad, A., Hameed, B., & Aziz, N. (2007). Adsorption of direct dye on palm ash: kinetic and equilibrium modeling. Journal of Hazardous Materials, 141(1), 70–76.

    CAS  Article  Google Scholar 

  • Ali, I., Asim, M., & Khan, T. A. (2012). Low cost adsorbents for the removal of organic pollutants from wastewater. Journal of Environmental Management, 113, 170–183.

    CAS  Article  Google Scholar 

  • Babiker, M. E., Aziz, A., Yusup, M., & Abakar, M. (2013). Pyrolysis characteristics of Phoenix dactylifera date palm seeds using thermo-gravimetric analysis (TGA). International Journal of Environmental Science and Technology, 4(5), 521–524.

    Google Scholar 

  • Banat, F., Al‐Asheh, S., & Al‐Makhadmeh, L. (2004). Utilization of raw and activated date pits for the removal of phenol from aqueous solutions. Chemical Engineering & Technology, 27(1), 80–86.

    CAS  Article  Google Scholar 

  • Banerjee, K., Cheremisinoff, P. N., & Cheng, S. L. (1997). Adsorption kinetics of < i > o</i > −xylene by flyash. Water Research, 31(2), 249–261.

    CAS  Article  Google Scholar 

  • Besbes, S., Blecker, C., Deroanne, C., Drira, N.-E., & Attia, H. (2004). Date seeds: chemical composition and characteristic profiles of the lipid fraction. Food Chemistry, 84(4), 577–584.

    CAS  Article  Google Scholar 

  • Boyd, G., Adamson, A., & Myers, L., Jr. (1947). The exchange adsorption of ions from aqueous solutions by organic zeolites. II. Kinetics1. Journal of the American Chemical Society, 69(11), 2836–2848.

    CAS  Article  Google Scholar 

  • Cardoso, N. F., Pinto, R. B., Lima, E. C., Calvete, T., Amavisca, C. V., Royer, B., et al. (2011). Removal of remazol black B textile dye from aqueous solution by adsorption. Desalination, 269(1), 92–103.

    CAS  Article  Google Scholar 

  • Cooney, D. O. (1998). Adsorption design for wastewater treatment: CRC Press.

  • Crini, G. (2006). Non-conventional low-cost adsorbents for dye removal: a review. Bioresource Technology, 97(9), 1061–1085.

    CAS  Article  Google Scholar 

  • Doyle, D., & Brown, A. (1997). Field test of produced water treatment with polymer modified bentonite. In SPE Rocky Mountain Regional Meeting, (pp. 137–142)

  • Dubinin, M., & Radushkevich, L. (1966). Evaluation of microporous materials with a new isotherm. Doklady Akademii Nauk SSSR, 55, 331–347.

    Google Scholar 

  • El-Naas, M. H., Al-Zuhair, S., & Alhaija, M. A. (2010a). Reduction of COD in refinery wastewater through adsorption on date-pit activated carbon. Journal of Hazardous Materials, 173(1), 750–757.

    CAS  Article  Google Scholar 

  • El-Naas, M. H., Al-Zuhair, S., & Alhaija, M. A. (2010b). Removal of phenol from petroleum refinery wastewater through adsorption on date-pit activated carbon. Chemical Engineering Journal, 162(3), 997–1005.

    CAS  Article  Google Scholar 

  • Fakhru’l-Razi, A., Pendashteh, A., Abdullah, L. C., Biak, D. R. A., Madaeni, S. S., & Abidin, Z. Z. (2009). Review of technologies for oil and gas produced water treatment. Journal of Hazardous Materials, 170(2), 530–551.

    Article  Google Scholar 

  • Fillo, J., Koraido, S., & Evans, J. (1992). Sources, characteristics, and management of produced waters from natural gas production and storage operations. In Produced Water (pp. 151–161): Springer.

  • Gao, J., Maguhn, J., Spitzauer, P., & Kettrup, A. (1998). Sorption of pesticides in the sediment of the Teufelsweiher pond (Southern Germany). I: equilibrium assessments, effect of organic carbon content and pH. Water Research, 32(5), 1662–1672.

    CAS  Article  Google Scholar 

  • Hansen, B., & Davies, S. (1994). Review of potential technologies for the removal of dissolved components from produced water: oil and natural gas production. Chemical Engineering Research and Design, 72(2), 176–188.

    CAS  Google Scholar 

  • Hayes, T., & Arthur, D. (2004) Overview of emerging produced water treatment technologies. In 11th Annual International Petroleum Conference: Albuquerque, NM.

  • Ho, Y.-S., & McKay, G. (1998). Kinetic models for the sorption of dye from aqueous solution by wood. Process Safety and Environmental Protection, 76(2), 183–191.

    CAS  Article  Google Scholar 

  • Igunnu, E. T., & Chen, G. Z. (2012). Produced water treatment technologies. International Journal of Low-Carbon Technologies, cts049.

  • Inoue, K., & Kawamoto, K. (2008). Adsorption characteristics of carbonaceous adsorbents for organic pollutants in a model incineration exhaust gas. Chemosphere, 70(3), 349–357.

    CAS  Article  Google Scholar 

  • Jeguirim, M., Dorge, S., Trouvé, G., & Said, R. (2012). Study on the thermal behavior of different date palm residues: characterization and devolatilization kinetics under inert and oxidative atmospheres. Energy, 44(1), 702–709.

    Article  Google Scholar 

  • Kassim, T. A., & Simoneit, B. R. (2001). Pollutant-solid phase interactions: Mechanisms, chemistry, and modeling (Vol. 5): Springer.

  • Kitis, M., Kitis, M., Kilduff, J. E., Kilduff, J. E., & Karanfil, T. (2001). Isolation of dissolved organic matter (dom) from surface waters using reverse osmosis and its impact on the reactivity of dom to formation and speciation of disinfection by-products. Water Research, 35(9), 2225–2234. doi:10.1016/S0043-1354(00)00509-1.

    CAS  Article  Google Scholar 

  • Lagergren, S. (1898). About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens Handlingar, 24(4), 1–39.

    Google Scholar 

  • Lin, S.-H., & Juang, R.-S. (2009). Adsorption of phenol and its derivatives from water using synthetic resins and low-cost natural adsorbents: a review. Journal of Environmental Management, 90(3), 1336–1349.

    CAS  Article  Google Scholar 

  • Liu, W., Wu, H., Wang, Z., Ong, S., Hu, J., & Ng, W. (2002). Investigation of assimilable organic carbon (AOC) and bacterial regrowth in drinking water distribution system. Water Research, 36(4), 891–898.

    CAS  Article  Google Scholar 

  • Lu, C., & Su, F. (2007). Adsorption of natural organic matter by carbon nanotubes. Separation and Purification Technology, 58(1), 113–121.

    CAS  Article  Google Scholar 

  • Matilainen, A., Vepsäläinen, M., & Sillanpää, M. (2010). Natural organic matter removal by coagulation during drinking water treatment: a review. Advances in Colloid and Interface Science, 159(2), 189–197.

    CAS  Article  Google Scholar 

  • McKay, G., Otterburn, M. S., & Aga, J. A. (1985). Fuller’s earth and fired clay as adsorbents for dyestuffs. Water, Air, and Soil Pollution, 24(3), 307–322.

    CAS  Article  Google Scholar 

  • Mohammad, M., Maitra, S., Ahmad, N., Bustam, A., Sen, T., & Dutta, B. K. (2010). Metal ion removal from aqueous solution using physic seed hull. Journal of Hazardous Materials, 179(1), 363–372.

    CAS  Article  Google Scholar 

  • Mohan, D., & Pittman, C. U., Jr. (2006). Activated carbons and low cost adsorbents for remediation of tri-and hexavalent chromium from water. Journal of Hazardous Materials, 137(2), 762–811.

    CAS  Article  Google Scholar 

  • Nandi, B., Goswami, A., & Purkait, M. (2009). Removal of cationic dyes from aqueous solutions by kaolin: kinetic and equilibrium studies. Applied Clay Science, 42(3), 583–590.

    CAS  Article  Google Scholar 

  • Nehdi, I., Omri, S., Khalil, M. I., & Al-Resayes, S. I. (2010). Characteristics and chemical composition of date palm (Phoenix canariensis) seeds and seed oil. Industrial Crops and Products, 32(3), 360–365. doi:10.1016/j.indcrop.2010.05.016.

    CAS  Article  Google Scholar 

  • Oladoja, N., Aboluwoye, C., Oladimeji, Y., Ashogbon, A., & Otemuyiwa, I. (2008). Studies on castor seed shell as a sorbent in basic dye contaminated wastewater remediation. Desalination, 227(1), 190–203.

    CAS  Article  Google Scholar 

  • Owen, D. M., Amy, G. L., Chowdhury, Z. K., Paode, R., McCoy, G., & Viscosil, K. (1995). NOM: characterization and treatability: natural organic matter. Journal - American Water Works Association, 87(1), 46–63.

    CAS  Google Scholar 

  • Özacar, M. (2003). Adsorption of phosphate from aqueous solution onto alunite. Chemosphere, 51(4), 321–327.

    Article  Google Scholar 

  • Özacar, M., & Şengil, I. A. (2003). Adsorption of reactive dyes on calcined alunite from aqueous solutions. Journal of Hazardous Materials, 98(1), 211–224.

    Article  Google Scholar 

  • Pan, B., & Xing, B. (2008). Adsorption mechanisms of organic chemicals on carbon nanotubes. Environmental Science & Technology, 42(24), 9005–9013.

    CAS  Article  Google Scholar 

  • Sait, H. H., Hussain, A., Salema, A. A., & Ani, F. N. (2012). Pyrolysis and combustion kinetics of date palm biomass using thermogravimetric analysis. Bioresource Technology, 118, 382–389.

    CAS  Article  Google Scholar 

  • Santé, O. M. D. L. (2011). Guidelines for drinking-water quality: World Health Organization.

  • Sathishkumar, M., Binupriya, A., Kavitha, D., & Yun, S. (2007). Kinetic and isothermal studies on liquid-phase adsorption of 2, 4-dichlorophenol by palm pith carbon. Bioresource Technology, 98(4), 866–873.

    CAS  Article  Google Scholar 

  • Senthil Kumar, P., Ramalingam, S., Senthamarai, C., Niranjanaa, M., Vijayalakshmi, P., & Sivanesan, S. (2010). Adsorption of dye from aqueous solution by cashew nut shell: studies on equilibrium isotherm, kinetics and thermodynamics of interactions. Desalination, 261(1), 52–60.

    CAS  Article  Google Scholar 

  • Slejko, F. L. (1985). Adsorption technology. A step-by-step approach to process evaluation and application. New York: Dekker.

    Google Scholar 

  • Veil, J. A., Puder, M. G., Elcock, D., & Redweik Jr, R. J. (2004). A white paper describing produced water from production of crude oil, natural gas, and coal bed methane. Prepared by Argonne National Laboratory for the US Department of Energy, National Energy Technology Laboratory, January. Available at http://www. ead. anl. gov/pub/dsp_detail. cfm.

  • Wang, J., Han, X., Ma, H., Ji, Y., & Bi, L. (2011). Adsorptive removal of humic acid from aqueous solution on polyaniline/attapulgite composite. Chemical Engineering Journal, 173(1), 171–177.

    CAS  Article  Google Scholar 

  • Wang, S.-L., Tzou, Y.-M., Lu, Y.-H., & Sheng, G. (2007a). Removal of 3-chlorophenol from water using rice-straw-based carbon. Journal of Hazardous Materials, 147(1), 313–318.

    CAS  Article  Google Scholar 

  • Wang, S. G., Liu, X. W., Gong, W. X., Nie, W., Gao, B. Y., & Yue, Q. Y. (2007b). Adsorption of fulvic acids from aqueous solutions by carbon nanotubes. Journal of Chemical Technology and Biotechnology, 82(8), 698–704.

    CAS  Article  Google Scholar 

  • Weber, W., & Morris, J. (1963). Kinetics of adsorption on carbon from solution. Journal of the Sanitary Engineering Division 89(17), 31–60.

  • Wilczak, A., & Keinath, T. M. (1993). Kinetics of sorption and desorption of copper (II) and lead (II) on activated carbon. Water Environment Research, 238–244.

  • Yang, Y., Zhang, X., & Wang, Z. (2002). Oilfield produced water treatment with surface-modified fiber ball media filtration. Water Science and Technology, 46(11–12), 165–170.

    CAS  Google Scholar 

  • Zinkus, G. A., Byers, W. D., & Doerr, W. W. (1998). Identify appropriate water reclamat’technologies. Chemical Engineering Progress, 19.

Download references


The lead author acknowledges the Office of Research & Development at Curtin University of Technology, Perth, Western Australia for providing Curtin International Postgraduate Research Scholarship (CIPRS). The lead author also acknowledges the funding support provided by Petroleum Development Oman (PDO) towards research infrastructure as well as the produced water samples from oilfields. Experimental support provided by Sultan Qaboos University is also acknowledged. Useful comments from anonymous reviewers and the editor are also acknowledged which led to improvements in the original version of the paper.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Mansour Al.Haddabi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Al.Haddabi, M., Vuthaluru, H., Znad, H. et al. Removal of Dissolved Organic Carbon from Oily Produced Water by Adsorption onto Date Seeds: Equilibrium, Kinetic, and Thermodynamic Studies. Water Air Soil Pollut 226, 172 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:


  • Date seeds
  • DOC
  • Equilibrium isotherms
  • Kinetic models
  • Thermodynamics