Skip to main content

Advertisement

Log in

Biosorption of Heavy Metals from Acid Mine Drainage by Modified Sericite and Microalgae Hybrid System

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This study investigates the use of sericite beads and microalgae for the removal of heavy metals from acid mine drainage (AMD) and the simultaneous enhancement of biomass productivity. The experiment was conducted over a period of 6 days in a hybrid system containing sericite beads and microalgae Chlorella sp. The results show that the biomass production increased to ~8.04 times its initial concentration of 0.367 g/L as measured by an optical panel photobioreactor (OPPBR) and had a light transmittance of 95 % at a 305-mm depth. Simultaneous percent removal of Fe, Cu, Zn, Mn, As, and Cd from the AMD effluent was found to be 97.78 to 99.26 %. Biomass production was significantly enhanced by removal of heavy metal ions. We thus found that our hybrid system of sericite beads and microalgae was highly effective in removing heavy metal and in enhancing biomass production and could be a useful alternative treatment of AMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ajjabi, L. C., & Chouba, L. (2009). Biosorption of Cu and Zn from aqueous solutions by dried marine green macroalga Chaetomorpha linum. Journal of Environmental Management, 90, 3485–3489.

    Article  CAS  Google Scholar 

  • An, J. H., Kim, C. C., Choi, S. B., Kim, S. R., Jung, J. Y., Lee, W. A., & Lee, T. S. (2007). A study on removal effect of heavy metals in mine wastewater by adsorbents. Report Institute of Health & Environment, 18, 138–149.

    Google Scholar 

  • APHA (2012). Standard methods for the examination of water and wastewater. 22nd edition, Washington DC, USA.

  • Ata, A., & Koldas, S. (2006). Acid mine drainage (AMD): causes, treatment and case studies. Journal of Cleaner Production, 14(12–13), 1139–1145.

    Google Scholar 

  • Carlozzi, P. (2003). Dilution of solar radiation through “culture” lamination in photobioreactor rows facing south–north: a way to improve the efficiency of light utilization by cyanobacteria (Arthrospira platensis). Biotechnology and Bioengineering, 81(3), 305–315.

    Article  CAS  Google Scholar 

  • Chen, C. Y., Yeh, K. L., Aisyah, R., Lee, D. J., & Chang, J. S. (2011). Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresource Technology, 102(1), 71–81.

    Article  CAS  Google Scholar 

  • Choi, H. J. (2014). Effect of optical panel distance in a photobioreactor for nutrient removal and cultivation of microalgae. World Journal of Microbiology and Biotechnology, 30, 2015–2023.

    Article  CAS  Google Scholar 

  • Choi, H. J., & Lee, S. M. (2014). Effect of optical panel thickness for nutrient removal and cultivation of microalgae in the photobioreactor. Bioprocess and Biosystems Engineering, 37(4), 697–705.

    Article  CAS  Google Scholar 

  • Coulton, R., Bullen, C., & Hallet, C. (2003). The design and optimization of active mine water treatment plants. Land Contamination and Reclamation, 11, 273–279.

    Article  Google Scholar 

  • García-Malea López, M. C., Del Río Sánchez, E., Casas López, J. L., Acién Fernández, F. G., Rivas, J., Guerrero, M. G., & Molina, G. E. (2006). Comparative analysis of the outdoor culture of Haematococcus pluvialis in tubular and bubble column photobioreactors. Journal of Biotechnology, 123(3), 329–342.

    Article  Google Scholar 

  • Genc, H., Tjell, C. J., McConchie, D., & Schuiling, O. (2003). Adsorption of arsenate from water using neutralized red mud. Journal of Colloid and Interface Science, 264, 327–334.

    Article  CAS  Google Scholar 

  • Hsieh, C. H., & Wu, W. T. (2009). A novel photobioreactor with transparent rectangular chambers for cultivation of microalgae. Biochemical Engineering Journal, 46(3), 300–305.

    Article  CAS  Google Scholar 

  • Johnson, D. B., & Hallberg, K. B. (2003). The microbiology of acidic mine waters. Research in Microbiology, 154, 466–473.

    Article  CAS  Google Scholar 

  • Johnson, D. B., & Hallberg, K. B. (2005). Acid mine drainage remediation options: a review. Science of the Total Environment, 338, 3–14.

    Article  CAS  Google Scholar 

  • Kim, M. N., & Lee, S. M. (2010). Organo-sericite for the removal of phenol and Cu2+ from aqueous solution. Korean Society of Water Science and Technology, 18(5), 29–35.

    Google Scholar 

  • Kim, J. O., Lee, S. M., & Jeon, C. (2014). Adsorption characteristics of sericite for cesium ions for an aqueous solution. Chemical Engineering Research and Design, 92(2), 368–374.

    Article  CAS  Google Scholar 

  • Kwon, T. N., & Jeon, C. (2013). Adsorption characteristics of sericite for nickel ions from industrial waste water. Journal of Industrial and Engineering Chemistry, 25, 68–72.

    Article  Google Scholar 

  • Lee, S. M., & Tiwari, D. (2012). Organo and inorgano-organo-modified clays in the remediation of aqueous solutions: an overview. Applied Clay Science, 59–60, 84–102.

    Article  Google Scholar 

  • Lee, S. M., & Tiwari, D. (2014). Organo-modified sericite in the remediation of aquatic environment contaminated with As(III) or As(V). Environmental Science and Pollution Research, 21, 407–418.

    Article  CAS  Google Scholar 

  • Liu, C. B., Lin, L. P., & Su, Y. C. (1996). Utilization of Chlorella vulgaris for uptake of nitrogen, phosphorus and heavy metals. Journal of the Chinese Agricultural Chemical Society, 34, 331–343.

    CAS  Google Scholar 

  • Mendoza-Co, L., Zatl, D. G., & Moreno-Sa, L. R. (2005). Cd2+ transport and storage in the chloroplast of Euglena gracilis. Biochimica et Biophysica Acta, 1706, 88–97.

    Article  Google Scholar 

  • Reddy, D. H. K., Lee, S. M., & Kim, J. O. (2013). A review on emerging applications of natural sericite and its composites. World Applied Sciences Journal, 27(11), 1514–1523.

    Google Scholar 

  • Romera, E., Gonzáalez, F., Ballester, A., Bláazquez, M. L., & Muñnoz, J. A. (2007). Comparative study of biosorption of heavy metals using different types of algae. Bioresource Technology, 98(17), 3344–3353.

    Article  CAS  Google Scholar 

  • Shanab, S., Essa, A., & Shalaby, E. (2012). Bioremoval capacity of tree heavy metals by some microalgae species (Egyptian Isolates). Plant Signaling & Behavior, 7(3), 392–399.

    Article  CAS  Google Scholar 

  • Tiwari, D., & Lee, S. M. (2012). Novel hybrid materials in the remediation of ground waters contaminated with As(III) and As(V). Chemical Engineering Journal, 204–206, 23–31.

    Article  Google Scholar 

  • Tiwari, D., Kim, H. Y., & Lee, S. M. (2009). Application of sericite in wastewater treatment: removal of Cu(II) and Pb(II) from aqueous solutions. Environmental Engineering Research, 11(6), 303–310.

    Google Scholar 

Download references

Acknowledgments

This study was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2013006899).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee-Jeong Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, HJ. Biosorption of Heavy Metals from Acid Mine Drainage by Modified Sericite and Microalgae Hybrid System. Water Air Soil Pollut 226, 185 (2015). https://doi.org/10.1007/s11270-015-2433-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2433-3

Keywords

Navigation