Skip to main content

Advertisement

Log in

Species-Specific Responses to Ozone and Drought in Six Deciduous Trees

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Saplings of alder (Alnus glutinosa), birch (Betula pendula), hazel (Corylus avellana), beech (Fagus sylvatica), ash (Fraxinus excelsior) and oak (Quercus robur) were exposed to five episodic ozone regimes in solardomes, with treatment means between 16 and 72 ppb. All trees were kept fully watered for the first 5 weeks of exposure, after which half the trees continued to be well-watered, whereas the other half were subjected to a moderate drought by applying approximately 45 % of the amount of water. Species-specific reductions in growth in response to both ozone and drought were found, which could result in reduced potential carbon sequestration in future ozone climates. In well watered conditions, the ozone treatments resulted in total biomass reductions for oak (18 %), alder (16 %), beech (15 %), ash (14 %), birch (14 %) and hazel (7 %) in the 72 ppb compared with the 32 ppb treatment. For beech, there was a reduction in growth in response to ozone in the well-watered treatment, but an increase in growth in response to ozone in the drought treatment, in contrast to the decreased growth that would occur as a result of stomatal closure in response to either the ozone or drought treatment, and therefore assumed to result from changes in hormonal signalling which could result in stomatal opening in combined ozone and drought conditions. For alder, in addition to a decrease in root biomass, there was reduced biomass of root nodules with high compared with low ozone for both drought-treated and well-watered trees. There was also a large reduction in the biomass of nodules from drought trees compared with well-watered. It is therefore possible that changes in the nitrogen dynamics of alder could occur due to reduced nodulation in both drought and elevated ozone conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andersen, C. P., Ritter, W., Gregg, J., Matyssek, R., & Grams, T. E. E. (2010). Below-ground carbon allocation in mature beech and spruce trees following long-term, experimentally enhanced O3 exposure in Southern Germany. Environmental Pollution, 158, 2604–2609.

    Article  CAS  Google Scholar 

  • Bates, B.C., Kundzewicz, Z.W., Wu, S., Palutikof, J.P. (2008). In Climate Change and Water, pp. 13-31. Technical Paper of the Intergovernmental Panel on Climate Change, IPCC Secretariat, Geneva, 210.

  • Baumgarten, M., Werner, H., Häberle, K.-H., Emberson, L. D., Fabian, P., & Matyssek, R. (2000). Seasonal ozone response of mature beech trees (Fagus sylvatica) at high altitude in the Bavarian Forest (Germany) in comparison with young beech grown in the field and in phytotrons. Environmental Pollution, 109, 431–442.

    Article  CAS  Google Scholar 

  • Blenkinsop, S., & Fowler, H. J. (2007). Changes in drought frequency, severity and duration for the British Isles projected by the PRUDENCE regional climate models. Journal of Hydrology, 342(1-2), 50–71.

    Article  Google Scholar 

  • Bonan, G. (2008). Carbon cycle. Fertilizing change. Nature Geoscience, 1, 645–646.

    Article  CAS  Google Scholar 

  • Bortier, K., De Temmerman, L., & Ceulemans, R. (2000a). Effects of ozone exposure in open-top chambers on poplar (Populus nigra) and beech (Fagus sylvatica): a comparison. Environmental Pollution, 109, 509–516.

    Article  CAS  Google Scholar 

  • Bortier, K., De Temmerman, L., & Ceulemans, R. (2000b). Effects of ozone exposure on growth and photosynthesis of beech seedlings (Fagus sylvatica). New Phytologist, 146, 271–280.

    Article  CAS  Google Scholar 

  • Braun, S., Schindler, C., Rihm, B., & Fluckiger, W. (2007). Shoot growth of mature Fagus sylvatica and Picea abies in relation to ozone. Environmental Pollution, 146, 624–628.

    Article  CAS  Google Scholar 

  • Brunner, I., & Godbold, D. L. (2007). Tree roots in a changing world. Journal of Forest Research, 12, 78–82.

    Article  Google Scholar 

  • Coleman, M. D., Dickson, R. E., Isebrands, J. G., & Karnosky, D. F. (1996). Root growth and physiology of potted and field-grown trembling aspen exposed to Tropospheric ozone. Tree Physiology, 16, 145–152.

    Article  CAS  Google Scholar 

  • Cooley, D. R., & Manning, W. J. (1987). The impact of ozone on assimilate partitioning in plants—a review. Environmental Pollution, 47, 95–113.

    Article  CAS  Google Scholar 

  • Gerosa, G., Marzuoli, R., Desotgiu, R., Bussotti, F., & Ballarin-Denti, A. (2009). Validation of the stomatal flux approach for the assessment of ozone visible injury in young forest trees. Results from the TOP (transboundary ozone pollution) experiment at Curno, Italy. Environmental Pollution, 157(5), 1497–1505.

    Article  CAS  Google Scholar 

  • Goodman, P. J. (1988). Nitrogen-fixation, transfer and turnover in upland and lowland grass clover swards, using N-15 isotope dilution. Plant and Soil, 112, 247–254.

    Article  Google Scholar 

  • Grantz, D. A., Gunn, S., & Vu, H. B. (2006). O3 impacts on plant development: a meta-analysis of root/shoot allocation and growth. Plant, Cell and Environment, 29, 1193–1209.

    Article  CAS  Google Scholar 

  • Hayes, F., Mills, G., Jones, M. L. M., & Ashmore, M. (2010). Does a simulated upland community respond to increasing background, peak or accumulated exposure of ozone? Atmospheric Environment, 44(34), 4155–4164.

    Article  CAS  Google Scholar 

  • Jyske, T., Holtta, T., Makinen, H., Nojd, P., Lumme, I., & Spiecker, H. (2010). The effect of artificially induced drought on radial increment and wood properties of Norway spruce. Tree Physiology, 30, 103–115.

    Article  Google Scholar 

  • King, J. S., Kubiske, M. E., Pregitzer, K. S., Hendrey, G. R., McDonald, E. P., Giardina, C. P., Quinn, V. S., & Karnosky, D. F. (2005). Tropospheric O3 compromises net primary production in young stands of trembling aspen, paper birch and sugar maple in response to elevated atmospheric CO2. New Phytologist, 168, 623–635.

    Article  CAS  Google Scholar 

  • Landolt, W., Buhlmann, U., Bleuler, P., & Bucher, J. B. (2000). Ozone exposure-response relationships for biomass and root/shoot ratio of beech (Fagus sylvatica), ash (Fraxinus excelsior), Norway spruce (Picea abies) and Scots pine (Pinus sylvestris). Environmental Pollution, 109, 473–478.

    Article  CAS  Google Scholar 

  • Lehner, B., Doll, P., Alcamo, J., Henrichs, T., & Kaspar, F. (2006). Estimating the impact of global change on flood and drought risks in Europe: a continental, integrated analysis. Climatic Change, 75(3), 273–299.

    Article  Google Scholar 

  • Löw, M., Herbinger, K., Nunn, A. J., Haberle, K. H., Leuchner, M., Heerdt, C., Werner, H., Wipfler, P., Pretzsch, H., Tausz, M., & Matyssek, R. (2006). Extraordinary drought of 2003 overrules ozone impact on adult beech trees (Fagus sylvatica). Trees-Structure and Function, 20(5), 539–548.

    Article  Google Scholar 

  • Matyssek, R., Weiser, G., Ceulemans, R., Rennenberg, H., Pretzsch, H., Harberer, K., Löw, M., Nunn, A., Werner, H., Wipfler, P., Osswaldg, W., Nikolova, P., Hanke, D. E., Kraigher, H., Tausz, M., Bahnweg, G., Kitao, M., Dieler, J., Sandermann, H., Herbinger, K., Grebenc, T., Blumenrother, M., Deckmyn, G., Grams, T. E. E., Heerdt, C., Leuchner, M., Fabian, P., & Haberle, K. H. (2010). Enhanced ozone strongly reduces carbon sink strength of adult beech (Fagus sylvatica)—resume from the free-air fumigation study at Kranzberg Forest. Environmental Pollution, 158, 2527–2532.

    Article  CAS  Google Scholar 

  • Meehl, G. A., Arblaster, J. M., & Tebaldi, C. (2007). Contributions of natural and anthropogenic forcing to changes in temperature extremes over the United States. Geophysical Research Letters, 34, L19709.

    Article  Google Scholar 

  • Mikkelsen, T. N., & Jorgensen, H. S. (1996). Acceleration of leaf senescence in Fagus sylvatica L. by low levels of tropospheric ozone demonstrated by leaf colour, chlorophyll fluorescence and chloroplast ultrastructure. Trees – Structure and Function, 10, 145–156.

    Google Scholar 

  • Mills, G., Hayes, F., Wilkinson, S., & Davies, W. J. (2009). Chronic exposure to increasing background ozone impairs stomatal functioning in grassland species. Global Change Biology, 15(6), 1522–1533.

    Article  Google Scholar 

  • Nunn, A. J., Anegg, S., Betz, G., Simons, S., Kalisch, G., Seidlitz, H. K., Grams, T. E. E., Haberle, K. H., Matyssek, R., Bahnweg, G., Sandermann, H., & Langebartels, C. (2005a). Role of ethylene in the regulation of cell death and leaf loss in ozone-exposed European beech. Plant, Cell and Environment, 28, 886–897.

    Article  CAS  Google Scholar 

  • Nunn, A. J., Kozovits, A. R., Reiter, I. M., Heerdt, C., Leuchner, M., Lütz, C., Liu, X., Löw, M., Winkler, J. B., Grams, T. E. E., Häberle, K.-H., Werner, H., Fabian, P., Rennenberg, H., & Matyssek, R. (2005b). Comparison of ozone uptake and sensitivity between a phytotron study with young beech and a field experiment with adult beech (Fagus sylvatica). Environmental Pollution, 137, 494–506.

    Article  CAS  Google Scholar 

  • Okano, K., Ito, O., Takeba, G., Shimizu, A., & Totsuka, T. (1984). Alteration of C-13 assimilate partitioning in plants of Phaseolus vulgaris exposed to ozone. New Phytologist, 97, 155–163.

    Article  CAS  Google Scholar 

  • Pääkkönen, E., Holopainen, T., & Karenlampi, L. (1997). Differences in growth, leaf senescence and injury, and stomatal density in birch (Betula pendula Roth) in relation to ambient levels of ozone in Finland. Environmental Pollution, 96, 117–127.

    Article  Google Scholar 

  • Pääkkönen, E., Vahala, J., Pohjolai, M., Holopainen, T., & Karenlampi, L. (1998). Physiological, stomatal and ultrastructural ozone responses in birch (Betula pendula Roth) are modified by water stress. Plant, Cell and Environment, 21, 671–684.

    Article  Google Scholar 

  • Paoletti, E., Nali, C., & Lorenzini, G. (2002). Photosynthetic behaviour of two Italian clones of European beech (Fagus sylvatica L) exposed to ozone. Phyton-Annales Rei Botanicae, 42, 149–155.

    CAS  Google Scholar 

  • Riikonen, J., Lindsberg, M. M., Holopainen, T., Oksanen, E., Lappi, J., Peltonen, P., & Vapaavuori, E. (2004). Silver birch and climate change: variable growth and carbon allocation responses to elevated concentration of carbon dioxide and ozone. Tree Physiology, 24, 1227–1237.

    Article  CAS  Google Scholar 

  • Royal Society. (2008). Ground-level ozone in the 21st century: future trends, impacts and policy implications. Science Policy Report 15/08. London: The Royal Society.

    Google Scholar 

  • Samuelson, L. J., Kelly, J. M., Mays, P. A., & Edwards, G. S. (1996). Growth and nutrition of Quercus rubra L seedlings and mature trees after three seasons of ozone exposure. Environmental Pollution, 91, 317–323.

    Article  CAS  Google Scholar 

  • Sanchez-Salguero, R., Navarro-Cerrillo, R. M., Camerero, J. J., & Fernandez-Cancio, A. (2012). Selective drought-induced decline of pine species in southeastern Spain. Climatic Change, 113, 767–785.

    Article  Google Scholar 

  • Silim, S., Nash, R., Reynard, D., White, B., & Schroeder, W. (2009). Leaf gas exchange and water potential responses to drought in nine poplar (Populus spp.) clones with contrasting drought tolerance. Trees – Structure and Function, 23(5), 959–969.

    Article  Google Scholar 

  • Sincik, M., & Acikgoz, E. (2007). Effects of white clover inclusion on turf characteristics, nitrogen fixation and nitrogen transfer from white clover to grass species in turf mixtures. Communications in Soil Science and Plant Analysis, 38, 13–14.

    Article  Google Scholar 

  • Sitch, S., Cox, P. M., Collins, W. J., & Huntingford, C. (2007). Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. Nature, 448, 791–795.

    Article  CAS  Google Scholar 

  • Solberg, S., Bergström, R., Langner, J., Laurila, T., & Lindskog, A. (2005). Changes in Nordic surface ozone episodes due to European emission reductions in the 1990s. Atmospheric Environment, 39, 179–192.

    Article  CAS  Google Scholar 

  • Thiel, D., Kreyling, J., Backhaus, S., Beierkuhnlein, C., Buhk, C., Egen, K., Huber, G., Konnert, M., Nagy, L., & Jentsch, A. (2014). Different reactions of central and marginal provenances of Fagus sylvatica to experimental drought. European Journal of Forest Research, 133, 247–260.

    Article  Google Scholar 

  • Verghese, S. K., & Misra, A. K. (2000). PCR-RFLP based screening of Frankia in alder nodules having different levels of nitrogenise activity. Symbiosis, 28, 337–350.

    CAS  Google Scholar 

  • Volz, A., & Kley, D. (1988). Evaluation of the Montsouris series of ozone measurements made in the nineteenth century. Nature, 332, 240–242.

    Article  CAS  Google Scholar 

  • Wagg, S., Mills, G., Hayes, F., Wilkinson, S., & Davies, W. J. (2013). Stomata are less responsive to environmental stimuli in high background ozone in Dactylis glomerata and Ranunculus acris. Environmental Pollution, 175, 82–91.

  • Wilkinson, S., & Davies, W. J. (2009). Ozone suppresses soil drying- and abscisic acid (ABA)-induced stomatal closure via an ethylene-dependent mechanism. Plant, Cell and Environment, 32, 949–959.

    Article  CAS  Google Scholar 

  • Wilkinson, S., & Davies, W. J. (2010). Drought, ozone, ABA and ethylene: new insights from cell to plant to community. Plant, Cell and Environment, 33, 510–525.

    Article  CAS  Google Scholar 

  • Wilson, R. C., Fleming, Z. L., Monks, P. S., Clain, G., Henne, S., Konovalov, I. B., Szopa, S., & Menut, L. (2012). Have primary emission reduction measures reduced ozone across Europe? An analysis of European rural background ozone trends 1996–2005. Atmospheric Chemistry and Physics, 12, 437–454.

    Article  CAS  Google Scholar 

  • Wipfler, P., Seifert, T., Heerdt, C., Werner, H., & Pretzsch, H. (2005). Growth of adult Norway Spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica L.) under free-air ozone fumigation. Plant Biology, 7, 611–618.

    Article  CAS  Google Scholar 

  • Wittig, V. E., Ainsworth, E. A., & Long, S. P. (2007). To what extent do current and projected increase in surface ozone affect photosynthesis and stomatal conductance of trees? A meta-analytic review of the last 3 decades of experiments. Plant, Cell and Environment, 30, 1150–1162.

    Article  CAS  Google Scholar 

  • Wittig, V. E., Ainsworth, E. A., Naidu, S. L., Karnosky, D. F., & Long, S. P. (2009). Quantifying the impact of current and future tropospheric ozone on tree biomass, growth, physiology and biochemistry: a quantitative meta-analysis. Global Change Biology, 15, 396–424.

    Article  Google Scholar 

  • Xiao, J., Zhuang, Q., Liang, E.Y., McGuire, A.D., Moody, A., Kicklighter, D.W., Shao, X.M., Melillo, J.M. (2009). Twentieth-century droughts and their impacts on terrestrial carbon cycling in China. Earth Interactions 13:article 10.

Download references

Acknowledgments

Thanks to Aled Williams (Aled Williams Mechatronics) for maintenance of the Solardomes ozone exposure facility.

Funding

This study was made possible by financial support from the Centre for Ecology and Hydrology, UK, project reference NEC04951.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felicity Hayes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayes, F., Williamson, J. & Mills, G. Species-Specific Responses to Ozone and Drought in Six Deciduous Trees. Water Air Soil Pollut 226, 156 (2015). https://doi.org/10.1007/s11270-015-2428-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2428-0

Keywords

Navigation