Skip to main content
Log in

Phytoremediation Ability of Solanum nigrum L. to Cd-Contaminated Soils with High Levels of Cu, Zn, and Pb

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Solanum nigrum L., a potential cadmium (Cd) hyper-accumulator, has not currently been investigated to identify if it has a strong simultaneous accumulative ability to Cd, copper (Cu), zinc (Zn), or lead (Pb) in contaminated soils. In this study, a pot culture experiment was conducted to investigate the phytoremediation effects of S. nigrum L. on these heavy metals. The potential hyper-accumulative characteristics of S. nigrum L. were also discussed. The results showed that S. nigrum L. remediation effects were not inhibited by multi-heavy metals in contaminated soil. On the contrary, the height and wet and dry weights of S. nigrum L. increased compared to the control treatments and to treatments using only one heavy metal contaminant. Results from the Cd treatment experiments showed 1.66- and 1.45-fold increases in stem and root levels; there were also 1.24-, 2.17-, and 1.61-fold extraction increases in the leaves, stems, and roots, respectively. The differences found in shoot and root bioaccumulation coefficient (BC) factors for multi-heavy metal (MHM) treatment were higher than for a single Cd treatment. These results indicate that S. nigrum L. could stimulate biomass production and that it has a strong ability to tolerate and accumulate Cd in contaminated soils with Pb, Zn, and Cu. This study shows that the remediation scope for S. nigrum L. is greater than currently believed and that it will also remove Pb, Zn, and Cu while extracting Cd from contaminated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Basta, N. T., Gradwohl, R., Snethen, K. L., & Schroder, J. L. (2001). Chemical immobilization of lead, zinc, and cadmium in smelter contaminated soils using biosolids and rock phosphate. Journal of Environment Quality, 30(4), 1222–1230.

    Article  CAS  Google Scholar 

  • Blaylock, M. J., Salt, D. E., Dushenkov, S., Zakharova, O., Gussman, C., Kapulnik, Y., Ensley, B. D., & Raskin, I. (1997). Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environmental Science and Technology, 31(3), 860–865.

    Article  Google Scholar 

  • Brown, S., Chaney, R., Hallfrisch, J., Ryan, J. A., & Berti, W. R. (2004). In situ soil treatments to reduce the phyto- and bioavailability of lead, zinc, and cadmium. Journal of Environment Quality, 33(2), 522–531.

    Article  CAS  Google Scholar 

  • Cao, X. D., Wahbi, A., Ma, L. Q., Li, B., & Yang, Y. L. (2009). Immobilization of Zn, Cu, and Pb in contaminated soils using phosphate rock and phosphoric acid. Journal of Hazard Materials, 164(2-3), 555–564.

    Article  CAS  Google Scholar 

  • Cui, S., Zhou, Q. X., & Chao, L. (2007). Potential hyperaccumulation of Pb, Zn, Cu and Cd in endurant plants distributed in an old smeltery, northeast China. Environmental Geology, 51(6), 1043–1048.

    Article  CAS  Google Scholar 

  • Fang, Y. Y., Cao, X. D., & Zhao, L. (2012). Effects of phosphorus amendments and plant growth on the mobility of Pb, Cu, and Zn in a multi-metal-contaminated soil. Environmental Science and Pollution Research, 19(5), 1659–1667.

    Article  CAS  Google Scholar 

  • Gao, Y., Miao, C. H. Y., Xia, J., Luo, C. H. Y., Mao, L., Zhou, P., & Shi, W. J. (2012). Effect of citric acid on phytoextraction and antioxidative defense in Solanum nigrum L. as a hyperaccumulator under Cd and Pb combined pollution. Environmental Earth Sciences, 65(7), 1923–1932.

    Article  CAS  Google Scholar 

  • Gleba, D., Borisjuk, N. V., Borisjuk, L. G., Kneer, R., Poulev, A., Skarzhinskaya, M., Dushenkov, S., Logendra, S., Gleba, Y. Y., & Raskin, I. (1999). Use of plant roots for phytoremediation and molecular farming. Proceedings of National Academy of Sciences of the United States of America, 96(11), 5973–5977.

    Article  CAS  Google Scholar 

  • Guo, Z., Yuan, H. Y., & Ao, Y. S. (2009). Effect of cadmium on photosynthesis and nutrient elements uptake of Solanum nigrum L. seedlings. Ecology and Environmental Sciences, 18(3), 824–829 (in Chinese).

    Google Scholar 

  • Hemen, S. (2011). Metal hyperaccumulation in plants: a review focusing on phytoremediation technology. Journal of Environmental Science and Technology, 4(2), 118–138.

    Article  Google Scholar 

  • Ismail, B. S., Farihah, K., & Khairiah, J. (2005). Bioaccumulation of heavy metals in vegetables from selected agricultural areas. Bulletin of Environmental Contamination and Toxicology, 74(2), 320–327.

    Article  CAS  Google Scholar 

  • Ji, P. H., Song, Y. F., Sun, T. H., Liu, Y., Cao, X. F., Xu, D., Yang, X. X., & McRae, T. (2011). In-situ cadmium phytoremediation using Solanum nigrum L.: the bio-accumulation characteristics trial. International Journal of Phytoremediation, 13(10), 1014–1023.

    Article  CAS  Google Scholar 

  • Kim, S. H., & Lee, I. S. (2010). Comparison of the ability of organic acids and EDTA to enhance the phytoextraction of metals from a multi metal contaminated soil. Bulletin of Environmental Contamination and Toxicology, 84(2), 255–259.

    Article  CAS  Google Scholar 

  • Kramer, U. (2010). Metal hyperaccumulation in plants. Annual Review of Plant Biology, 61, 517–534.

    Article  Google Scholar 

  • Lane, T. W., Saito, M. A., George, G. N., Pickering, I. J., Prince, R. C., & Morel, F. M. M. (2005). A cadmium enzyme from a marine diatom. Nature, 435, 42.

    Article  CAS  Google Scholar 

  • Liu, M. Q., Yanai, J., Jiang, R. F., Zhang, F. S., McGrath, S. P., & Zhao, F. J. (2008). Does cadmium play a physiological role in the hyperaccumulator Thlaspi caerulescens? Chemosphere, 71, 1276–1283.

    Article  CAS  Google Scholar 

  • Mathe-Gaspar, G., Sipter, E., Auerbach, R., & Gruiz, K. (2009). Change of bioaccumulation of toxic metals in vegetables. Communications in Soil Science and Plant Analysis, 40(1-6), 285–293.

    Article  Google Scholar 

  • Naser, A. A.‚ Harminder, P. S., Khan, M. I. R., Asim, M., Tasir, S. P., Asha, N., Daizy, R. B., Nafees, A. K., Armando, C. D., Eduarda, P., & Iqbal, A. (2015). Too much is bad—an appraisal of phytotoxicity of elevated plant-beneficial heavy metal ions. Environmental Science Pollution Research, 22(5), 3361–3382.

  • Peng, K. J., Luo, C. L., Chen, Y. H., Wang, G. P., Li, X. D., & Shen, Z. G. (2009). Cadmium and other metal uptake by Lobelia chinensis and Solanum nigrum from contaminated soils. Bulletin of Environmental Contamination and Toxicology, 83(2), 260–264.

    Article  CAS  Google Scholar 

  • Salt, D. E., Pickering, I. J., Prince, R. C., Gleba, D., Dushenkov, V., Smith, R. D., & Raskin, I. (1997). Metal accumulation by aquacultured seedlings of Indian mustard. Environmental Science Technology, 31, 1636–1644.

    Article  CAS  Google Scholar 

  • Seaman, J. C., Arey, J. S., & Bertsch, P. M. (2001). Immobilization of nickel and other metals in contaminated sediments by hydroxyapatite addition. Journal of Environmental Quality, 30(2), 460–469.

    Article  CAS  Google Scholar 

  • Song, X. Y., Hu, X. J., Ji, P. H., Li, Y. S., Chi, G. Y., & Song, Y. F. (2012). Phytoremediation of cadmium-contaminated farmland soil by the hyperaccumulator Beta vulgaris L. var. cicla. Bulletin of Environmental Contamination and Toxicology, 88(4), 623–626.

    Article  CAS  Google Scholar 

  • Sparks, D. L., Page, A. L., Helmke, P. A., Loeppert, R. H., Soltanpour, P. N., Tabatabai, M. A., et al. (1996). Methods of soil analysis part 3: chemical method. Madison Wisconsin: Soil science society of America, Inc. American Society of Agronomy, Inc.

  • Sun, R. L., Zhou, Q. X., & Wang, X. (2006). Relationships between cadmium accumulation and organic acids in leaves of S. nigrum L. as a cadmium hyperaccumulator. Environmental Science, 27(4), 765–769 (in Chinese).

    CAS  Google Scholar 

  • Sunda, W. G., & Huntsman, S. A. (1996). Antagonisms between cadmium and zinc toxicity and manganese limitation in a coastal diatom. Limnology and Oceanography, 41(3), 373–387.

    Article  CAS  Google Scholar 

  • Systat software. (2010). Sigma Plot 12.0. Software for windows 2007. San Jose: Systat software, inc.

    Google Scholar 

  • Tang, Y. T., Qiu, R. L., Zeng, X. W., Ying, R. R., Yu, F. M., & Zhou, X. Y. (2009). Lead, zinc, cadmium hyperaccumulation and growth stimulation in Arabis paniculata Franch. Environmental and Experimental Botany, 66(1), 126–134.

    Article  CAS  Google Scholar 

  • Wei, S. H., & Zhou, Q. X. (2004). Identification of weed species with hyperaccumulative characteristics of heavy metals. Progress in Natural Science, 6, 495–503.

    Article  Google Scholar 

  • Wei, S. H., Zhou, Q. X., & Wang, X. (2005). Cadmium-hyperaccumulator Solanum nigrum L. and its accumulating characteristics. Environmental Science, 26(3), 167–171 (in Chinese).

    CAS  Google Scholar 

  • Wesam, A. K., & Hajer, A.-Q. (2014). Cadmium, copper and zinc toxicity effects on growth, proline content and genetic stability of Solanum nigrum L., a crop wild relative for tomato; comparative study. Physiology and Molecular Biology of Plants, 20(1), 31–39.

    Article  Google Scholar 

  • Yoon, J., Cao, X. D., Zhou, Q. X., & Ma, L. Q. (2006). Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. The Science of the Total Environment., 368(2-3), 456–464.

    Article  CAS  Google Scholar 

  • Yu, C. L., Liu, B., & Xu, X. (2011). Effect of DA-6 on enhanced remediation efficiency of Solanum nigrum L. in serious cadmium polluted soil. Scientia Agriculture Sinica, 44(16), 3485–3490 (in Chinese).

    CAS  Google Scholar 

  • Yu, C. L., Liu, B., Yang, Y., & Qin, Y. C. (2013). Effects of chemical control on Solanum nigrum L. remediation to cadmium (Cd) from seriously-polluted soil. Journal of Beijing Forestry University, 35(5), 133–138 (in Chinese).

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the financial support provided for this work by the Educational Department of Heilongjiang Province of China (12541129), and Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry (2014-1685); the study was also supported by the National Natural Science Foundation (21406043).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cailian Yu or Hong Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, C., Peng, X., Yan, H. et al. Phytoremediation Ability of Solanum nigrum L. to Cd-Contaminated Soils with High Levels of Cu, Zn, and Pb. Water Air Soil Pollut 226, 157 (2015). https://doi.org/10.1007/s11270-015-2424-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2424-4

Keywords

Navigation