Coal Bottom Ash as Sorbing Material for Fe(II), Cu(II), Mn(II), and Zn(II) Removal from Aqueous Solutions

  • Varinporn Asokbunyarat
  • Eric D. van Hullebusch
  • Piet N. L. Lens
  • Ajit P. Annachhatre


Investigations were undertaken to study sorption of heavy metal ions from aqueous solution onto coal bottom ash. X-ray diffraction analysis of coal bottom ash indicated presence of feldspar (KAlSi3O8–NaAlSi3O8–CaAl2Si2O8), mullite (Al6Si2O13), and magnetite (Fe2+Fe3+2O4). Toxicity characteristics leaching procedure (TCLP) revealed that heavy metal ions such as Fe(II), Fe(III), Mn(II), Cu(II), Zn(II), As(III), As(V), Pb(II), and Cd(II) could be leached out from coal bottom ash. Continuous column test with the bottom ash showed negligible heavy metal ion leach-out at pH 6.0, although at pH 4.2 some heavy metal ion leaching, mainly of Mn(II), was observed. Batch sorption studies with individual heavy metal ions (Fe(II), Cu(II), Zn(II) and Mn(II)) revealed that the heavy metal ion sorption onto coal bottom ash could be described by pseudo-second-order kinetics. Sorption isotherm studies revealed that Langmuir isotherm could adequately describe the heavy metal ion sorption onto coal bottom ash with maximum adsorption capacity (qm) ranging from 1.00 to 25.00 mg/g for various heavy metal ions. Removal of heavy metal ions by coal bottom ash is attributed to both adsorption and hydroxide precipitation of heavy metals due to the presence of different oxides (i.e., SiO2, Al2O3, Fe2O3, CaO) in coal bottom ash.


Coal bottom ash Sorption Heavy metals Sorption capacity Sorption kinetics Sorption isotherm 


  1. ACAA (2010). Coal combustion product (CCP) production & use survey report.Google Scholar
  2. Agarwal, A. K., Kadu, M. S., Pandhurnekar, C. P., & Muthreja, I. L. (2012). Kinetics and adsorption isotherm study of removal of Zn+2 ions from aqueous solution using thermal power plant fly ash. International Journal of Environmental Science and Development, 3(4), 376–381.CrossRefGoogle Scholar
  3. Ahmed, A. T., Khalid, H. A., Ahmed, A. A., & Chen, D. (2010). A lysimeter experimental study and numerical characterization of the leaching of incinerator bottom ash waste. Waste Management, 30, 1536–1543.CrossRefGoogle Scholar
  4. Amarasinghe, B. M. W. P. K., & Williams, R. A. (2007). Tea waste as a low cost adsorbent for the removal of Cu and Pb from wastewater. Chemical Engineering Journal, 132, 299–309.CrossRefGoogle Scholar
  5. APHA, AWWA & WEF. (2005). Standard methods for the examination of water and wastewater. 21st edition. Washington, DC.Google Scholar
  6. Asokan, P., Saxena, M., & Asolekar, S. R. (2005). Coal combustion residues-environmental implications and recycling potentials. Resources, Conservation and Recycling, 43, 239–262.CrossRefGoogle Scholar
  7. Bhattacharyya, K. G., & Gupta, S. S. (2008). Kaolinite and montmorillonite as adsorbents for Fe(III), Co(II) and Ni(II) in aqueous medium. Applied Clay Science, 41, 1–9.CrossRefGoogle Scholar
  8. Bhattacharyya, K. G., & Gupta, S. S. (2006). Kaolinite, montmorillonite, and their modified derivatives as adsorbents for removal of Cu(II) from aqueous solution. Separation and Purification Technology, 50, 388–397.CrossRefGoogle Scholar
  9. Bohli, T., Villaescusa, I., & Ouederni, A. (2013). Comparative study of bivalent cationic metals adsorption Pb(II), Cd(II), Ni(II) and Cu(II) on olive stones chemically activated carbon. Chemical Engineering & Process Technology, 4(4), 1–7.CrossRefGoogle Scholar
  10. Brigden, K., Santillo, D., & Stringer, R. (2002). Hazardous emissions from Thai coal-fired power plants: toxic and potentially toxic elements in fly ashes collected from Mae Moh and Thai Petrochemical Industry coal-fired power plants in Thailand, 2002. Exeter, UK: Greenpeace Research Laboratories, Department of Biological Sciences, University of Exeter.Google Scholar
  11. CEN. (2004). Characterization of waste—leaching behaviour tests—up-flow percolation test (under specified conditions), British Standards (in English). CEN TS, 14405.Google Scholar
  12. Chaiyasith, S., Chaiyasith, P., & Septhum, C. (2006). Removal of cadmium and nickel from aqueous solution by adsorption onto treated fly ash from Thailand. Thammasat International Journal of Science and Technology, 11(2), 13–20.Google Scholar
  13. Cheng, T. W., Lee, M. L., Ko, M. S., Ueng, T. H., & Yang, S. F. (2012). The heavy metal adsorption characteristics on metakaolin-based geopolymer. Applied Clay Science, 56, 90–96.CrossRefGoogle Scholar
  14. Dan-Asabe, B., Yaro, S. A., Yawas, D. S., & Aku, S. Y. (2013). Water displacement and bulk density—relation methods of finding density of powered materials. International Journal of Innovative Research in Science, Engineering and Technology, 2(9), 5561–5566.Google Scholar
  15. Dean, J. A. (1999). Lange’s handbook of chemistry (15th ed.). New York: McGraw-Hill.Google Scholar
  16. Erdem, E., Karapinar, N., & Donat, R. (2004). The removal of heavy metal cations by natural zeolites. Journal of Colloid and Interface Science, 280, 309–314.CrossRefGoogle Scholar
  17. Gorme, J. B., Maniquiz, M. C., Kim, S. S., Son, Y. G., Kim, Y. T., & Kim, L. H. (2010). Characterization of bottom ash as an adsorbent of lead from aqueous solutions. Environmental Engineering Research, 15(4), 207–213.CrossRefGoogle Scholar
  18. Hashim, M. A., Mukhopadhyay, S., Sahu, J. N., & Sengupta, B. (2011). Remediation technogies for heavy metal contaminated groundwater. Journal of Environmental Management, 92, 2355–2388.CrossRefGoogle Scholar
  19. IEA. (2014). The impact of global coal supply on worldwide electricity prices. Paris: IEA/OECD.Google Scholar
  20. Jayaranjan, M.L.D., van Hullebusch, E.D., Annachhatre, A. P. (2014). Reuse options for coal fired power plant bottom ash and fly ash. Review in Environmental Science and Bio/Technology, in press. Google Scholar
  21. Jayaranjan, M. L. D., & Annachhatre, A. P. (2013). Precipitation of heavy metals from coal ash leachate using biogenic hydrogen sulfide generated from FGD gypsum. Water Science and Technology, 67(2), 311–318.CrossRefGoogle Scholar
  22. Johnson, C. A., Brandenberger, S., & Baccini, P. (1995). Acid neutralizing capacity of municipal waste incinerator bottom ash. Environmental Science and Technology, 29, 142–147.CrossRefGoogle Scholar
  23. Kim, B., & Prezzi, M. (2008). Compaction characteristics and corrosivity of Indiana class-F fly ash and bottom ash mixtures. Construction and Building Materials, 22, 694–702.CrossRefGoogle Scholar
  24. Komnitsas, K., Baztzas, G., & Paspaliaris, I. (2004). Clean up of acidic leachates using fly ash barriers: laboratory column studies. Global Nest: The International Journal, 6(1), 81–89.Google Scholar
  25. Kurama, H., & Kaya, M. (2008). Usage of coal combustion bottom ash in concrete mixture. Construction and Building Materials, 22, 1922–1928.CrossRefGoogle Scholar
  26. Lalhruaitluanga, H., Jayaram, K., Prasad, M. N. V., & Kumar, K. K. (2010). Lead(II) adsorption from aqueous solutions by raw and activated charcoals of Melocanna baccifera Roxburgh (bamboo)—a comparative study. Journal of Hazardous Materials, 175, 311–318.CrossRefGoogle Scholar
  27. Mason, P. M. (2013). Trace metals in aquatic systems. Wiley-Blackwell.Google Scholar
  28. Mishra, P. C., & Patel, R. K. (2009). Removal of lead and zinc ions from water by low cost adsorbents. Journal of Hazardous Materials, 168, 319–325.CrossRefGoogle Scholar
  29. Mohan, S., & Gandhimathi, R. (2009). Removal of heavy metal ions from municipal solid waste leachate using coal fly ash as an adsorbent. Journal of Hazardous Materials, 169, 351–359.CrossRefGoogle Scholar
  30. Mohan, D., & Chander, S. (2001). Single component and multi-component adsorption of metal ions by activated carbons. Colloids and Surface A: Physicochemical and Engineering Aspects, 177, 183–196.CrossRefGoogle Scholar
  31. Moreno, J. C., Gómez, R., & Giraldo, L. (2010). Removal of Mn, Fe, Ni and Cu Ions from wastewater using cow bone charcoal. Materials, 3, 452–466.CrossRefGoogle Scholar
  32. Mosti, T., Rowson, N. A., & Simmons, M. J. H. (2009). Adsorption of heavy metals from acid mine drainage by natural zeolite. International Journal of Mineral Processing, 92, 42–48.CrossRefGoogle Scholar
  33. Neupane, G. and Donahoe, R. J. (2013). Leachability of elements in alkaline and acidic coal fly ash samples during batch and column leaching tests. Fuel, 1-13.Google Scholar
  34. Pimraksa, K., Chindaprasirt, P., Huanjit, T., Tang, C., & Sato, T. (2013). Cement mortars hybridized with zeolite-like materials made of lignite bottom ash for heavy metal encapsulation. Journal of Cleaner Production, 41, 31–41.CrossRefGoogle Scholar
  35. Pipatmanomai, S., Fungtammasan, B., & Bhattacharya, S. (2009). Characteristics and composition of lignites and boiler ashes and their relation to slagging: the case of Mae Moh PCC boilers. Fuel, 88, 116–123.CrossRefGoogle Scholar
  36. Sawyer, C. N., Macarty, P. L., & Parkin, G. F. (2007). Chemistry for environmental engineering and science (15th ed.). New York: McGraw-Hill.Google Scholar
  37. Sharma, D. C., & Forster, C. F. (1993). Removal of hexavalent chromium using sphagnum moss peat. Water Resource, 27, 1201–1208.Google Scholar
  38. Sukpreabprom, H., Arquero, O. A., Naksata, W., Sooksamiti, P., & Janhom, S. (2014). Isotherm, kinetic and thermodynamic studies on the adsorption of Cd(II) and Zn(II) ions from aqueous solutions onto bottom ash. International Journal of Environmental Science and Development, 5(2), 165–170.CrossRefGoogle Scholar
  39. Üçer, A., Uyanik, A., & Aygün, Ş. F. (2006). Adsorption of Cu(II), Cd(II), Zn(II), Mn(II) and Fe(III) ions by tannic acid immobilized activated carbon. Separation and Purification Technology, 47(3), 113–118.CrossRefGoogle Scholar
  40. USEPA. (2013). International energy outlook 2013 with projections to 2040. DC: Washington.Google Scholar
  41. USEPA. (1996). Acid digestion of sediments, sludges, and soils. EPA SW 846-3050.Google Scholar
  42. USEPA. (1992). Toxicity characteristic leaching procedure. EPA SW 846-1311.Google Scholar
  43. Wang, J., Ban, H., Teng, X., Wang, H., & Ladwig, K. (2006). Impacts of pH and ammonia on the leaching of Cu(II) and Cd(II) from coal fly ash. Chemosphere, 64, 1892–1898.CrossRefGoogle Scholar
  44. Yavuz, O., Altunkaynak, Y., & Guzel, F. (2003). Removal of copper, nickel, cobalt and manganese from aqueous solution by kaolinite. Water Research, 37, 948–952.CrossRefGoogle Scholar
  45. Zhang, M. (2011). Adsorption study of Pb(II), Cu(II) and Zn(II) from simulated acid mine drainage using dairy manure compost. Chemical Engineering Journal, 172, 361–368.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Varinporn Asokbunyarat
    • 1
  • Eric D. van Hullebusch
    • 2
  • Piet N. L. Lens
    • 3
  • Ajit P. Annachhatre
    • 1
  1. 1.School of Environment, Resources and DevelopmentAsian Institute of TechnologyPathumthaniThailand
  2. 2.Laboratoire Géomatériaux et Environnement (EA 4508)Université Paris-Est, UPEMMarne-la-ValléeFrance
  3. 3.Department of Environmental Engineering and Water TechnologyUNESCO-IHE Institute for Water EducationDelftThe Netherlands

Personalised recommendations