Skip to main content
Log in

Arsenic Adsorption Using Palm Oil Waste Clinker Sand Biotechnology: an Experimental and Optimization Approach

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

We need specific and competent adsorbents to remove arsenic and bring it down to permissible levels in drinking water. Therefore, industrial byproducts are extensively applied to produce large amounts of natural adsorbents. Similarly, managing optimum arsenic adsorption with palm oil clinker sand (POCS) is possible through a careful statistical planning of adsorption variables. We plan and perform a minimum number of experiments to (1) obtain optimum arsenic adsorption and (2) provide a new possible application opportunity to the industrial waste managers and future planners. We observed that adsorption of arsenic was dependent on the pH of the system, initial concentration of arsenic (mg L−1), amount (mg) of POCS, and temperature of the bio-adsorption system. A correlation among the study variables was constructed by three-dimensional (3D) response surfaces and two-dimensional (2D) contour plots based on central composite design (CCD) experiments in a batch mode of study. A quadratic model fitted well with the experimental data and better explained the superiority of current bio-adsorption system and efficient removal of arsenic from water samples. We confirmed that the selected variables were experimentally and statistically significant and controlled the overall adsorption response by the batch system. A comparative and thorough analysis of the adsorption process confirmed that selected variables were mutually interacting in a nonlinear fashion in this study. Excellent experimental results and external comparative studies prove the relative importance of the present model and adsorption system for arsenic remediation biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aghaeinejad-Meybodi, A., Ebadi, A., Shafiei, S., Khataee, A. R., & Rostampour, M. (2015). Modeling and optimization of antidepressant drug fluoxetine removal in aqueous media by ozone/H2O2 process: comparison of central composite design and artificial neural network approaches. J Taiwan Inst Chem Eng, 48(0), 40–48. doi:10.1016/j.jtice.2014.10.022.

    Article  CAS  Google Scholar 

  • Ahmad, T., Rafatullah, M., Ghazali, A., Sulaiman, O., & Hashim, R. (2011). Oil palm biomass-based adsorbents for the removal of water pollutants—a review. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev, 29(3), 177–222. doi:10.1080/10590501.2011.601847.

    Article  CAS  Google Scholar 

  • Ahmmad, R., Jumaat, M. Z., Bahri, S., & Islam, A. B. M. S. (2014). Ductility performance of lightweight concrete element containing massive palm shell clinker. Construct Build Mater, 63, 234–241. doi:10.1016/j.conbuildmat.2014.04.022.

    Article  Google Scholar 

  • Anirudhan, T. S., Divya, L., & Parvathy, J. (2013). Arsenic adsorption from contaminated water on Fe (III)-coordinated amino-functionalized poly(glycidylmethacrylate)-grafted TiO2-densified cellulose. J Chem Technol Biotechnol, 88(5), 878–886. doi:10.1002/jctb.3916.

    Article  CAS  Google Scholar 

  • Arcibar-Orozco, J. A., Josue, D.-B., Rios-Hurtado, J. C., & Rangel-Mendez, J. R. (2014). Influence of iron content, surface area and charge distribution in the arsenic removal by activated carbons. Chem Eng J, 249, 201–209. doi:10.1016/j.cej.2014.03.096.

    Article  CAS  Google Scholar 

  • Badkar, D., Pandey, K., & Buvanashekaran, G. (2013). Development of RSM- and ANN-based models to predict and analyze the effects of process parameters of laser-hardened commercially pure titanium on heat input and tensile strength. Int J Adv Manuf Technol, 65(9–12), 1319–1338. doi:10.1007/s00170-012-4259-0.

    Article  Google Scholar 

  • Bailey, S. E., Olin, T. J., Bricka, R. M., & Adrian, D. D. (1999). A review of potentially low-cost sorbents for heavy metals. Water Res, 33(11), 2469–2479. doi:10.1016/s0043-1354(98)00475-8.

    Article  CAS  Google Scholar 

  • Bibi, S., Farooqi, A., Hussain, K., & Haider, N. (2015). Evaluation of industrial based adsorbents for simultaneous removal of arsenic and fluoride from drinking water. J Clean Prod, 87, 882–896. doi:10.1016/j.jclepro.2014.09.030.

    Article  CAS  Google Scholar 

  • Bilici Baskan, M., & Pala, A. (2010). A statistical experiment design approach for arsenic removal by coagulation process using aluminum sulfate. Desalination, 254(1–3), 42–48. doi:10.1016/j.desal.2009.12.016.

    Article  CAS  Google Scholar 

  • Dias, J. M., Alvim-Ferraz, M. C. M., Almeida, M. F., Rivera-Utrilla, J., & Sanchez-Polo, M. (2007). Waste materials for activated carbon preparation and its use in aqueous-phase treatment: a review. J Environ Manage, 85(4), 833–846. doi:10.1016/j.jenvman.2007.07.031.

    Article  CAS  Google Scholar 

  • Dixit, S., & Hering, J. G. (2003). Comparison of arsenic (V) and arsenic (III) sorption onto iron oxide minerals: implications for arsenic mobility. Environ Sci Tech, 37(18), 4182–4189. doi:10.1021/es030309t.

    Article  CAS  Google Scholar 

  • Dora, T. K., Mohanty, Y. K., Roy, G. K., & Sarangi, B. (2013). Adsorption studies of As (III) from wastewater with a novel adsorbent in a three-phase fluidized bed by using response surface method. J Environ Chem Eng, 1(3), 150–158. doi:10.1016/j.jece.2013.04.011.

    Article  CAS  Google Scholar 

  • Ferraro, J.R. (2012) Practical Fourier transform infrared spectroscopy: industrial and laboratory chemical analysis. Elsevier.

  • Hameed, B. H., Tan, I. A., & Ahmad, A. L. (2009). Preparation of oil palm empty fruit bunch-based activated carbon for removal of 2,4,6-trichlorophenol: optimization using response surface methodology. J Hazard Mater, 164(2–3), 1316–1324. doi:10.1016/j.jhazmat.2008.09.042.

    Article  CAS  Google Scholar 

  • Han, C., Pu, H., Li, H., Deng, L., Huang, S., He, S., & Luo, Y. (2013). The optimization of As (V) removal over mesoporous alumina by using response surface methodology and adsorption mechanism. J Hazard Mater, 254–255, 301–309. doi:10.1016/j.jhazmat.2013.04.008.

    Article  Google Scholar 

  • Kim, C. S., Chi, C., Miller, S. R., Rosales, R. A., Sugihara, E. S., Akau, J., Rytuba, J. J., & Webb, S. M. (2013). (Micro) spectroscopic analyses of particle size dependence on arsenic distribution and speciation in mine wastes. Environ Sci Tech, 47, 8164–8171. doi:10.1021/es4010653.

    CAS  Google Scholar 

  • Li, J., Lu, H., Guo, J., Xu, Z. M., & Zhou, Y. H. (2007). Recycle technology for recovering resources and products from waste printed circuit boards. Environ Sci Tech, 41(6), 1995–2000. doi:10.1021/es0618245.

    Article  CAS  Google Scholar 

  • Naseri, E., Reyhanitabar, A., Oustan, S., Heydari, A. A., & Alidokht, L. (2014). Optimization arsenic immobilization in a sandy loam soil using iron-based amendments by response surface methodology. Geoderma, 232–234, 547–555. doi:10.1016/j.geoderma.2014.06.009.

    Article  Google Scholar 

  • Nieto-Delgado, C., & Rangel-Mendez, J. R. (2012). Anchorage of iron hydro (oxide) nanoparticles onto activated carbon to remove As (V) from water. Water Res, 46(9), 2973–2982. doi:10.1016/j.watres.2012.03.026.

    Article  CAS  Google Scholar 

  • Oh, S.-Y., & Yoon, M.-K. (2013). Chemical extraction of arsenic from contaminated soils in the vicinity of abandoned mines and a smelting plant under subcritical conditions. Soil Sediment Contam, 23(2), 166–179. doi:10.1080/15320383.2014.808169.

    Article  Google Scholar 

  • Roig, A., Cayuela, M. L., & Sanchez-Monedero, M. A. (2006). An overview on olive mill wastes and their valorisation methods. Waste Manag, 26(9), 960–969. doi:10.1016/j.wasman.2005.07.024.

    Article  CAS  Google Scholar 

  • Roy, P., Mondal, N. K., & Das, K. (2014). Modeling of the adsorptive removal of arsenic: a statistical approach. J Environ Chem Eng, 2(1), 585–597. doi:10.1016/j.jece.2013.10.014.

    Article  CAS  Google Scholar 

  • Ryan, J. V., Lemieux, P. M., Pollard, K., Workman, R., Antley, B., & Yurk, J. (2000). Characterization of organic emissions from hazardous waste incineration processes under the new EPA draft Risk Burn Guidance: measurement issues. Waste Manag, 20(5–6), 347–353. doi:10.1016/s0956-053x (99)00336-0.

    Article  CAS  Google Scholar 

  • Sen Gupta, B., Chatterjee, S., Rott, U., Kauffman, H., Bandopadhyay, A., DeGroot, W., Nag, N. K., Carbonell-Barrachina, A. A., & Mukherjee, S. (2009). A simple chemical free arsenic removal method for community water supply—a case study from West Bengal, India. Environ Pollut, 157(12), 3351–3353. doi:10.1016/j.envpol.2009.09.014.

    Article  CAS  Google Scholar 

  • Shanmugaprakash, M., & Sivakumar, V. (2013). Development of experimental design approach and ANN-based models for determination of Cr (VI) ions uptake rate from aqueous solution onto the solid biodiesel waste residue. Bioresour Technol, 148, 550–559. doi:10.1016/j.biortech.2013.08.149.

    Article  CAS  Google Scholar 

  • Simsek, E. B., Özdemir, E., & Beker, U. (2013). Process optimization for arsenic adsorption onto natural zeolite incorporating metal oxides by response surface methodology. Water Air Soil Pollut, 224(7), 1614. doi:10.1007/s11270-013-1614-1.

    Article  Google Scholar 

  • Singh, R., Singh, S., Parihar, P., Singh, V. P., & Prasad, S. M. (2015). Arsenic contamination, consequences and remediation techniques: a review. Ecotoxicol Environ Saf, 112, 247–270. doi:10.1016/j.ecoenv.2014.10.009.

    Article  CAS  Google Scholar 

  • Smith, A. H., Lingas, E. O., & Rahman, M. (2000). Contamination of drinking-water by arsenic in Bangladesh: a public health emergency. Bull World Health Organ, 78(9), 1093–1103.

    CAS  Google Scholar 

  • Trois, C., & Cibati, A. (2015). South African sands as a low cost alternative solution for arsenic removal from industrial effluents in permeable reactive barriers: column tests. Chem Eng J, 259, 981–989. doi:10.1016/j.cej.2014.08.063.

    Article  CAS  Google Scholar 

  • Tuna, A. Ö. A., Özdemir, E., Simsek, E. B., & Beker, U. (2013). Optimization of process parameters for removal of arsenic using activated carbon-based iron-containing adsorbents by response surface methodology. Water Air Soil Pollut, 224(9), 1685. doi:10.1007/s11270-013-1685-z.

    Article  Google Scholar 

  • Wang, Y., & Jiao, J. J. (2014). Multivariate statistical analyses on the enrichment of arsenic with different oxidation states in the Quaternary sediments of the Pearl River Delta, China. J Geochem Explor, 138, 72–80. doi:10.1016/j.gexplo.2013.12.012.

    Article  CAS  Google Scholar 

  • Witek-Krowiak, A., Chojnacka, K., Podstawczyk, D., Dawiec, A., & Pokomeda, K. (2014). Application of response surface methodology and artificial neural network methods in modelling and optimization of biosorption process. Bioresour Technol, 160, 150–160. doi:10.1016/j.biortech.2014.01.021.

    Article  CAS  Google Scholar 

  • Zaman, A. U., & Lehmann, S. (2013). The zero waste index: a performance measurement tool for waste management systems in a ‘zero waste city’. J Clean Prod, 50, 123–132. doi:10.1016/j.jclepro.2012.11.041.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Bright Spark Program, University of Malaya and High Impact Research MoE Grant UM.C/625/1/HIR/MoE/SC/04/01 from the Ministry of Education Malaysia and Centre for Ionic Liquids (UMCiL) for the support/assistance provided to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Abdur Rehman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rehman, M.A., Yusoff, I., Ahmmad, R. et al. Arsenic Adsorption Using Palm Oil Waste Clinker Sand Biotechnology: an Experimental and Optimization Approach. Water Air Soil Pollut 226, 149 (2015). https://doi.org/10.1007/s11270-015-2411-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2411-9

Keywords

Navigation