Skip to main content
Log in

ZnO–montmorillonite as Photocatalyst and Flocculant for Inhibition of Cyanobacterial Bloom

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The cyanobacterial bloom in water has adversely affected water quality, local economies, and human health. Therefore, the removal and restricting the growth of harmful algae are of particular interest. In this study, ZnO–montmorillonite that could flocculate and restrict the growth of Microcystis aeruginosa, used as a probe of cyanobacterial, was prepared by hydrothermal solution intercalation method and characterized by means of XRD, IR, and TEM. In ZnO–montmorillonite, ZnO nanoparticles were either embedded in the interlayer space of montmorillonite or dispersed on montmorillonite surface. The determinations of chlorophyll a levels, total soluble protein content, and malondialdehyde concentration demonstrated that ZnO–montmorillonite had stronger flocculation effect on M. aeruginosa compared with natural montmorillonite and ZnO under visible light and had a better photocatalytic degradation effect on M. aeruginosa than ZnO under UV irradiation after 1 h. Under UV, 95 % removal efficiency was achieved for M. aeruginosa in 1 h using 50 mg L−1 ZnO–montmorillonite, and the proliferation of M. aeruginosa was totally inhibited due to the high photocatalytic activity and absorption flocculation ability of ZnO–montmorillonite. Furthermore, the cell structure was irreversibly damaged and the cell lysed. The synergy of absorption flocculation and photocatalysis of ZnO–montmorillonite promoted the removal of M. aeruginosa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Beaulieu, S. E., Sengco, M. R., & Anderson, D. M. (2005). Using clay to control harmful algal blooms: deposition and resuspension of clay/algal flocs. Harmful Algae, 4(1), 123–138. doi:10.1016/j.hal.2003.12.008.

    Article  Google Scholar 

  • Bradford, M. M. (1979). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248–254. doi:10.1006/abio.1976.9999, 10.1016/0003-2697(76)90527-3.

    Article  Google Scholar 

  • Cao, X. H., Song, X. X., Yu, Z. M., & Wang, K. (2006). Mechanisms of removing red tide organisms by organo-clays. Environmental Sciences, 27(8), 1522–1530 (in Chinese, with English abstract).

    Google Scholar 

  • Chen, J. Z., Zhang, H. Y., Han, Z. P., Ye, J. Y., & Liu, Z. L. (2012). The influence of aquatic macrophytes on Microcystis aeruginosa growth. Ecological Engineering, 42, 130–133. doi:10.1016/j. ecoleng. 2012.02.021.

    Article  Google Scholar 

  • Dvininov, E., Popovici, E., Pode, R., Cocheci, L., Barvinschi, P., & Nica, V. (2009). Synthesis and characterization of TiO2-pillared romanian clay and their application for azoic dyes photodegradation. Journal of Hazardous Materials, 167(1-3), 1050–1056. doi:10.1016/j.jhazmat.2009.01.105.

    Article  CAS  Google Scholar 

  • Fatimah, I., Wang, S. B., & Wulandari, D. (2011). ZnO/montmorillonite for photocatalytic and photochemical degradation of methylene blue. Applied Clay Science, 53(4), 553–560. doi:10.1016/j.clay.2011.05.001.

    Article  CAS  Google Scholar 

  • Gao, Z. W., Peng, X. J., Zhang, H. M., Lu, Z. K., & Fan, B. (2009). Montmorillonite–Cu(II)/Fe(III) oxides magnetic material for removal of cyanobacterial Microcystis aeruginosa and its regeneration. Desalination, 247(1-3), 337–345. doi:10.1016/j.desal.2008.10.006.

    Article  CAS  Google Scholar 

  • Gustafsson, S., Hultberg, M., Figueroa, R. I., & Rengefors, K. (2009). On the control of HAB species using low biosurfactant concentrations. Harmful Algae, 8(6), 857–863. doi:10.1016/j.hal.2009.04.002.

    Article  CAS  Google Scholar 

  • Hagstrom, J. A., & Graneli, E. (2005). Removal of Prymnesium parvum (Haptophyceae) cells under different nutrient conditions by clay. Harmful Algae, 42(2), 49–260. doi:10.1016/j.hal.2004.03.004.

    Google Scholar 

  • Hong, J. A., Ma, H., & Otaki, M. (2005). Controlling algal growth in photo-dependent decolorant sludge by photocatalysis. Journal of Bioscience and Bioengineering, 99(6), 592–597. doi:10.1263/jbb.99.592.

    Article  CAS  Google Scholar 

  • Jiang, J. Q., & Kim, C. G. (2008). Comparison of algal removal by coagulation with clays and Al-based coagulants. Separation Science and Technology, 43(7), 1677–1686. doi:10.1080/01496390801973615.

    Article  CAS  Google Scholar 

  • Jiang, C., Wang, R., & Ma, W. (2010). The effect of magnetic nanoparticles on Microcystis aeruginosa removal by a composite coagulant. Colloids and surfaces A: physicochemical and engineering aspects, 369(1–3), 260–267. doi:10.1016/j.colsurfa.2010.08.033.

    Article  CAS  Google Scholar 

  • Khaorapapong, N., Khumchoo, N., & Ogawa, M. (2011). Preparation of zinc oxide–montmorillonite hybrids. Materials Letters, 65(4), 657–660. doi:10.1016/j.matlet.2010.11.052.

    Article  CAS  Google Scholar 

  • Kıranşan, M., Khataee, A., Karaca, S., & Sheydaei, M. (2015). Artificial neural network modeling of photocatalytic removal of a disperse dye using synthesized of ZnO nanoparticles on montmorillonite. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 140, 465–473. doi:10.1016/j.saa.2014.12.100.

    Article  Google Scholar 

  • Li, S. Z., & Wu, P. X. (2010). Characterization of sodium dodecyl sulfate modified iron pillared montmorillonite and its application for the removal of aqueous Cu(II) and Co(II). Journal of Hazardous Materials, 173(1-3), 62–70. doi:10.1016/j.jhazmat.2009.08.047.

    Article  CAS  Google Scholar 

  • Liao, X. S. (2009). Study on the photocatalytic influenee of cyanobaeterial growth using nanocrystalline TiO 2 under UV-C light and its application. Wuhan: Huazhong University of Seience and Technology.

    Google Scholar 

  • Liu, G. F., Fan, C. X., Zhong, J. C., Zhang, L., Ding, S. M., Yan, S. H., & Han, S. Q. (2010). Using hexadecyl trimethyl ammonium bromide (CTAB) modified clays to clean the Microcystis aeruginosa blooms in Lake Taihu, China. Harmful Algae, 9(4), 413–418. doi:10.1016/j.hal.2010.02.004.

    Article  CAS  Google Scholar 

  • Nagayama, K., Shibata, T., Fujimoto, K., Honjo, T., & Nakamura, T. (2003). lgicidal effect of phlorotannins from the brown alga Ecklonia kurome on red tide microalgae. Aquaculture, 218(1-4), 601–611. doi:10.1016/S0044-8486(02)00255-7.

    Article  CAS  Google Scholar 

  • Obregón Alfaro, S., Martínez-de la Cruz, A., Torres-Martínez, L. M., & Lee, S. W. (2010). Remove of marine plankton by photocatalysts with Aurivillius-type structure. Catalysis Communications, 11(5), 326–330. doi:10.1016/j.catcom.2009.10.024.

    Article  Google Scholar 

  • Ouidri, S., & Khalaf, H. (2009). Synthesis of benzaldehyde from toluene by a photocatalytic oxidation using TiO2-pillared clays. Journal of Photochemistry and Photobiology A: Chemistry, 207(2-3), 268–273. doi:10.1016/j.jphotochem.2009.07.019.

    Article  CAS  Google Scholar 

  • Pan, G., Zhang, M. M., Chen, H., Zou, H., & Yan, H. (2006). Removal of cyanobacterial blooms in Taihu Lake using local soils. I. Equilibrium and kinetic screening on the flocculation of Microcystis aeruginosa using commercially available clays and minerals. Environmental Pollution, 141(2), 195–200. doi:10.1016/j.envpol.2005.08.041.

    Article  CAS  Google Scholar 

  • Peller, J. R., Whitman, R. L., Griffith, S., Harris, P., Peller, C., & Scalzitti, J. (2007). TiO2 as a photocatalyst for control of the aquatic invasive alga Cladophora under natural and artificial light. Journal of Photochemistry and Photobiology A: Chemistry, 186(2-3), 212–217. doi:10.1016/j.jphotochem.2006.08.009.

    Article  CAS  Google Scholar 

  • Rodríguez-Gonzáleza, V., Obregón Alfarob, S., Torres-Martínezc, L. M., Cho, S. H., & Lee, S. W. (2010). Silver-TiO2 nanocomposites: synthesis and harmful algae bloom UV-photoelimination. Applied Catalysis B: Environmental, 98(3-4), 229–234. doi:10.1016/j.apcatb.2010.06.001.

    Article  Google Scholar 

  • Schmack, M., Chambers, J., & Dallas, S. (2012). Evaluation of a bacterial algal control agent in tank-based experiments. Water Research, 46(7), 2435–2444. doi:10.1016/j.watres.2012.02.026.

    Article  CAS  Google Scholar 

  • Sengco, M. R., Johannes, H. A., Granéli, E., & Anderson, D. M. (2005). Removal of Prymnesium parvum (Haptophyceae) and its toxins using clay minerals. Harmful Algae, 4(2), 261–274. doi:10.1016/j.hal.2004.05.001.

    Article  Google Scholar 

  • Shirota, A. (1989). Red tide problem and countermeasures. International Journal of Aquatic Fish Technology, 1, 195–223.

    Google Scholar 

  • State Environmental Protection Administration in China. (2002). Monitor analysis method of water and waste water (4th ed., p. 670). Beijing: China Environmental Science Press (in Chinese).

    Google Scholar 

  • Tang, Y., Zhang, H., Liu, X. A., Cai, D. Q., Feng, H. Y., Miao, C. G., Wang, X. Q., Wu, Z. Y., & Yu, Z. L. (2011). Flocculation of harmful algal blooms by modified attapulgite and its safety evaluation. Water Research, 45(9), 2855–2862. doi:10.1016/j.watres.2011.03.003.

    Article  CAS  Google Scholar 

  • Tao, Y., Zhang, X. H., Au Doris, W. T., Mao, X. Z., & Yuan, K. (2010). The effects of sub-lethal UV-C irradiation on growth and cell integrity of cyanobacteria and green algae. Chemosphere, 78(5), 541–547. doi:10.1016/j.chemosphere.2009.11.016.

    Article  CAS  Google Scholar 

  • Uchiyama, M., & Mihara, M. (1978). Determination of malonaldehyde precursor in tissues by thiobarbitaric acid test. Analytical Biochemistry, 86(1), 271–278. doi:10.1016/0003-2697(78)90342-1.

    Article  CAS  Google Scholar 

  • Winkler, M., Hemschemeier, A., Gotor, C., Melis, A., & Happe, T. (2002). [Fe]-hydrogenases in green algae: photo-fermentation and hydrogen evolution under sulfur deprivation. International Journal of Hydrogen Energy, 27(11-12), 1431–1439. doi:10.1016/S0360-3199(02)00095-2.

    Article  CAS  Google Scholar 

  • Wu, T., Yan, X. Y., Cai, X., Tan, S. Z., Li, H. Y., Liu, J. S., & Yang, W. D. (2010). Removal of Chattonella marina with clay minerals modified with a gemini surfactant. Applied Clay Science, 50(4), 604–607. doi:10.1016/j.clay.2010.10.005.

    Article  CAS  Google Scholar 

  • Wu, X. G., Joyce, E. M., & Mason, T. J. (2012). Evaluation of the mechanisms of the effect of ultrasound on Microcystis aeruginosa at different ultrasonic frequencies. Water Research, 462(9), 851–2858. doi:10.1016/j.watres.2012.02.019.

    Google Scholar 

  • Yan, Q. Y., Yu, Y. H., Feng, W. S., Pan, G., Chen, H., Chen, J. A., Yang, B., Li, X. M., & Zhang, X. (2009). Plankton community succession in artificial systems subjected to cyanobacterial blooms removal using chitosan-modified soils. Microbial Ecology, 58(1), 47–55. doi:10.1007/s00248-008-9434-3.

    Article  CAS  Google Scholar 

  • Yin, H. C., Liu, Q. J., Lin, Q., Chen, S. N., & Zhou, L. J. (2005). Inhibitory effects of Nano-TiO2 loaded Pd on cyanobacteria growth. Acta Botanica Boreali Occidentalia Sinica, 25(9), 1884–1887 (in Chinese, with English abstract).

    CAS  Google Scholar 

  • Yu, Z. M., Zou, J., & Ma, X. (1994). Application of clays to removal of red tide organisms. I. Coagulation of red tide organisms with clays. Chinese Journal of Oceanology and Limnology, 12(3), 193–200.

    Article  CAS  Google Scholar 

  • Yu, X. J., Zhou, J. Y., Wang, Z. P., & Cai, W. M. (2010). Preparation of visible light-responsive AgBiO3 bactericide and its control effect on the Microcystis aeruginosa. Journal of Photochemistry and Photobiology B: Biology, 101(3), 265–270. doi:10.1016/j.jphotobiol.2010.07.011.

    Article  CAS  Google Scholar 

  • Yu, F., Zhao, L., Yin, P. H., & Li, S. T. (2011). Study on removal of Phaeocystis globosa with organic modified montmorillonite by quaternary phosphonium. China Environmental Sciece, 31(8), 1295–1299 (in Chinese, with English abstract).

    Google Scholar 

  • Zhang, G. K., Ding, X. M., Hu, Y. J., Huang, B. B., Zhang, X. Y., Qin, X. Y., Zhou, J., & Xie, J. W. (2008). Photocatalytic degradation of 4BS dye by N, S-codoped TiO2 pillared montmorillonite photocatalysts under visible-light irradiation. Journal of Physical Chemistry C, 112(46), 17994–17997. doi:10.1021/jp803939z.

    Article  CAS  Google Scholar 

  • Zhang, A., Zhang, R., Zhang, N., Hong, S., & Zhang, M. (2010). Synthesis and characterization of TiO2-montmorillonite nanocomposites and their photocatalytic activity. Kinetics and Catalysis, 51(4), 529–533. doi:10.1134/S0023158410040117.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Scientific Research Foundation for doctor, Hebei University of Science and Technology (010048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na Gu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, N., Gao, J., Wang, K. et al. ZnO–montmorillonite as Photocatalyst and Flocculant for Inhibition of Cyanobacterial Bloom. Water Air Soil Pollut 226, 136 (2015). https://doi.org/10.1007/s11270-015-2407-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2407-5

Keywords

Navigation