Skip to main content

Effect of Biochar in Cadmium Availability and Soil Biological Activity in an Anthrosol Following Acid Rain Deposition and Aging

Abstract

Acidic deposition is a worldwide problem that often leads to the increase in soil available heavy metals. Liming and biochar can both raise soil pH and immobilize heavy metals. An experiment was conducted in the laboratory to study the effects of acidic deposition on soil Cd mobility and soil biological activity in a soil polluted with Cd. Biochar, prepared from poultry litter biochar (PLB) or eucalyptus biochar (EB) was added at a rate of 3 %. Liming controls, bringing the soil to the same pH as that attained with biochar, were also used. The experimental results showed a higher risk of Cd leaching and impaired biological properties under simulated acid rain. Biochar addition resulted in a reduction in the risk of leaching and in improved biological properties and could provide benefits over liming for the management of soil polluted with heavy metals, especially in areas affected by acidic deposition.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Anderson, J., & Domsch, K. (1978). A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biology & Biochemistry, 10, 215–221.

    Article  CAS  Google Scholar 

  • Bol, R., Kandeler, E., Amelung, W., Glaser, B., Marx, M. C., Preedy, N., & Lorenz, K. (2003). Short-term effects of dairy slurry amendment on carbon sequestration and enzyme activities in a temperate grassland. Soil Biology & Biochemistry, 35, 1411–1421.

    Article  CAS  Google Scholar 

  • Bolan, N., Kunhikrishnan, A., Thangarajan, R., Kumpiene, J., Park, J., Makino, T., Kirkham, M. B., & Scheckel, K. (2014). Remediation of heavy metal(loid)s contaminated soils—to mobilize or to immobilize? Journal of Hazardous Materials, 266, 141–166.

    Article  CAS  Google Scholar 

  • Brennan, A., Moreno Jiménez, E., Alburquerque, J. A., Knapp, C. W., & Switzer, C. (2014). Effects of biochar and activated carbon amendment on maize growth and the uptake and measured availability of polycyclic aromatic hydrocarbons (PAHs) and potentially toxic elements (PTEs). Environmental Pollution, 193, 79–87.

    Article  CAS  Google Scholar 

  • Eivazi, F., & Tabatabai, M. A. (1988). Glucosidases and galactosidases in soils. Soil Biology & Biochemistry, 20, 601–606.

    Article  CAS  Google Scholar 

  • Ezawa, T., Yamamoto, K., & Yoshida, S. (2002). Enhancement of the effectiveness of indigenous arbuscular mycorrhizal fungi by inorganic soil amendments. Soil Science & Plant Nutrition, 48, 897–900.

    Article  Google Scholar 

  • Fang, Y., Wang, X., Zhu, F., Wu, Z., Li, J., Zhong, L., Chen, D., & Yoh, M. (2013). Three-decade changes in chemical composition of precipitation in Guangzhou city, southern China: has precipitation recovered from acidification following sulphur dioxide emission control? Tellus B, 65, 20213.

    Article  Google Scholar 

  • Fellet, G., Marmiroli, M., & Marchiol, L. (2014). Elements uptake by metal accumulator species grown on mine tailings amended with three types of biochar. Science of the Total Environment, 468–469, 598–608.

    Article  Google Scholar 

  • Galinato, P., Yoder, J. K., & Granatstein, D. (2011). The economic value of biochar in crop production and carbon sequestration. Energy Policy, 39, 6344–6350.

    Article  Google Scholar 

  • Hammer, E. C., Balogh-Brunstad, Z., Jakobsen, I., Olsson, P. A., Stipp, S. L. S., & Rillig, M. C. (2014). A mycorrhizal fungus grows on biochar and captures phosphorus from its surfaces. Soil Biology & Biochemistry, 77, 252–260.

    Article  CAS  Google Scholar 

  • Houben, D., Evrard, L., & Sonnet, P. (2013). Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar. Chemosphere, 92, 1450–1457.

    Article  CAS  Google Scholar 

  • Huang, D. Y., Xy, Y. G., Peng, P., Zhang, H. H., & Lan, J. B. (2009). Chemical composition and seasonal variation of acid deposition in Guangzhou, South China: comparison with precipitation in other major Chinese cities. Environmental Pollution, 157, 35–41.

    Article  CAS  Google Scholar 

  • Jalali, M., & Khanlari, Z. V. (2008). Effect of aging process on the fractionation of heavy metals in some calcareous soils of Iran. Geoderma, 143, 26–40.

    Article  CAS  Google Scholar 

  • Kang, H., & Lee, D. (1998). Changes of soil enzyme activities by simulated acid and nitrogen deposition. Chemistry and Ecology, 14, 123–131.

    Article  Google Scholar 

  • Kumari, K. G. I. D., Moldrup, P., Paradelo, M., & de Jonge, L. W. (2014). Phenanthrene sorption on biochar-amended soils: application rate, aging and physicochemical properties of soil. Water, Air and Soil Pollution, 225, 2105.

    Article  Google Scholar 

  • Kuperman, R. G., & Edwards, C. A. (1997). Effects of acidic deposition on soil invertebrates and microorganisms. Reviews of Environmental Contamination and Toxicology, 148, 35–137.

    CAS  Google Scholar 

  • Larssen, T., Semb, A., Mulder, J., Muñiz, I. P., Vogt, R. D., Lydersen, E., Angell, V., Dagang, V., & Eilertsen, O. (1999). Acid deposition and its effects in China: an overview. Environmental Science & Policy, 2, 9–24.

    Article  CAS  Google Scholar 

  • Likens, G. E., & Bormann, F. H. (1974). Acid rain: a serious regional environmental problem. Science, 184, 1176–1179.

    Article  CAS  Google Scholar 

  • Lindsay, W. L., & Norvell, W. A. (1969). Development of a DTPA micronutrients soil test. Agronomic Abstract, 69, 84.

    Google Scholar 

  • Ling, D. J., Huang, Q. C., & Ouyang, Y. (2010). Impacts of simulated acid rain on soil enzyme activities in a latosol. Ecotoxicology Environmental Safety, 73, 1914–1918.

    Article  CAS  Google Scholar 

  • Liu, E. N., & Liu, C. P. (2011). Effects of simulated acid rain on the antioxidative system in Cinnamomum philippinense seedlings. Water, Air, & Soil Pollution, 215, 127–135.

    Article  CAS  Google Scholar 

  • Liu, X., Zhang, A., Ji, C., Joseph, S., Bian, R., Li, L., Pan, G., & Paz-Ferreiro, J. (2013). Biochar’s effect on crop productivity and the dependence on experimental conditions—a meta-analysis of literature data. Plant and Soil, 373, 583–594.

    Article  CAS  Google Scholar 

  • Löfgren, S., Cory, N., Zetterberg, T., Larsson, P. E., & Kronnäs, V. (2009). The long-term effects of catchment liming and reduced sulphur deposition on forest soils and runoff chemistry in southwest Sweden. Forest Ecology Management, 258, 567–578.

    Article  Google Scholar 

  • Lu, H., Li, Z., Fu, S., Méndez, A., Gascó, G., & Paz-Ferreiro, J. (2014). Can biochar and phytoextractors be jointly used for cadmium remediation? PLoS ONE, 9, e95218.

    Article  Google Scholar 

  • Lu, H. P., Li, Z. A., Fu, S., Méndez, A., Gascó, G., & Paz-Ferreiro, J. (2015). Combining phytoextraction and biochar addition improves soil biochemical properties in a soil polluted with Cd. Chemosphere, 119, 209–216.

    Article  CAS  Google Scholar 

  • Lucchini, P., Quilliam, R. S., de Luca, T. H., Vamerali, T., & Jones, D. L. (2014). Does biochar application alter heavy metal dynamics in agricultural soil? Agriculture, Ecosystems & Environment, 184, 149–157.

    Article  CAS  Google Scholar 

  • Lv, Y., Wang, C., Jia, Y., Wang, W., Ma, X., Du, J., Pu, G., & Tian, X. (2014). Effects of sulfuric, nitric, and mixed acid rain on litter decomposition, soil microbial biomass, and enzyme activities in subtropical forests of China. Applied Soil Ecology, 79, 1–9.

    Article  Google Scholar 

  • Mendez, A., Paz-Ferreiro, J., Araujo, F., & Gasco, G. (2014). Biochar from pyrolysis of deinking paper sludge and its use in the treatment of a nickel polluted soil. Journa of Analysis Applied Pyrology, 107, 46–52.

    Article  CAS  Google Scholar 

  • Mukherjee, A., Zimmerman, A. R., Hamdan, R., & Cooper, W. T. (2014). Physicochemical changes in pyrogenic organic matter (biochar) after 15 months of field aging. Solid Earth, 5, 693–704.

  • Nagodavithane, C. L., Singh, B., & Fang, Y. (2014). Effect of ageing on surface charge characteristics and adsorption behaviour of cadmium and arsenate in two contrasting soils amended with biochar. Soil Research, 52, 155–163.

    Article  CAS  Google Scholar 

  • Parham, J. A., & Deng, S. P. (2000). Detection, quantification and characterization of β-glucosaminidase activity in soil. Soil Biology & Biochemistry, 32, 1183–1190.

    Article  CAS  Google Scholar 

  • Paz-Ferreiro, J., Fu, S. In press. Biological indices for soil quality evaluation: perspectives and limitations. Land Degrad. Develop. doi:10.1002/ldr.2262.

  • Paz-Ferreiro, J., Trasar-Cepeda, C., Leirós, M. C., Seoane, S., & Gil-Sotres, F. (2007). Biochemical properties of acid soils under native grassland in a temperate humid zone. New Zealand Journal of Agricultural Research, 50, 537–548.

    Article  CAS  Google Scholar 

  • Paz-Ferreiro, J., Lu, H., Fu, S., Méndez, A., & Gascó, G. (2014a). Use of phytoremediation and biochar to remediate heavy metal polluted soils: a review. Solid Earth, 5, 65–75.

    Article  Google Scholar 

  • Paz-Ferreiro, J., Fu, S., Méndez, A., & Gascó, G. (2014b). Interactive effect of biochar and the earthworm Pontoscolex corethrurus on plant productivity and soil enzyme activity. Journal of Soils Sedimentation, 14, 483–494.

    Article  CAS  Google Scholar 

  • Rees, F., Simonnot, M. O., & Morel, J. L. (2014). Short-term effects of biochar on soil heavy metal mobility are controlled by intra-particle diffusion and soil pH increase. European Journal of Soil Science, 65, 149–161.

    Article  CAS  Google Scholar 

  • Saá, A., Trasar-Cepeda, M. C., Gil-Sotres, F., & Carballas, T. (1993). Changes in soil phosphorus and acid phosphatase activity immediately following forest fires. Soil Biological Biochemistry, 25, 1223–1230.

    Article  Google Scholar 

  • Scheer, C., Grace, P. R., Rowlings, D. W., Kimber, S., & van Zwieten, L. (2011). Effect of biochar amendment on the soil-atmosphere exchange of greenhouse gases from an intensive subtropical pasture in northern New South Wales, Australia. Plant Soil, 345, 47–58.

    Article  CAS  Google Scholar 

  • Uchimiya, M., Lima, I. M., Klasson, K. T., Chang, S., Wartelle, L. H., & Rodgers, J. E. (2010). Immobilization of heavy metal ions (CuII, CdII, NiII, and PbII) by broiler litter-derived biochars in water and soil. Journal of Agricultural Food Chemistry, 58, 5538–5544.

    Article  CAS  Google Scholar 

  • Ure, A.M., Davidson, C.M., Thomas, R.P., 1995. Single and sequential extraction schemes for trace metal speciation in soil and sediment. Quality Assurance for Environmental Analysis, vol. 20. Elsevier Science B.V., pp. 505–523.

  • Vig, K., Megharaj, M., Senthunathan, N., & Naidu, R. (2003). Bioavailability and toxicity of cadmium to microorganisms and their activities in soil: a review. Advances in Environmental Research, 8, 121–135.

    Article  CAS  Google Scholar 

  • WHO. (1996). Guidelines for drinking water quality—Second Edition-Volume 2. Health criteria and other supporting information. Geneva: World Health Organization WHO.

    Google Scholar 

Download references

Acknowledgments

J. Paz-Ferreiro was sponsored by the Chinese Academy of Sciences (fellowship for young international scientists number 2012Y1SA0002). We acknowledge support from the National Natural Science Foundation of China (41301571), Key Project of Natural Science Foundation of Guangdong (2014A030311011), Key Project of Bureau of Science and Information Technology of Guangzhou Municipality and Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (2013K0008). We thank two anonymous reviewers for their comments on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Z. Li or J. Paz-Ferreiro.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lu, H., Li, Z., Fu, S. et al. Effect of Biochar in Cadmium Availability and Soil Biological Activity in an Anthrosol Following Acid Rain Deposition and Aging. Water Air Soil Pollut 226, 164 (2015). https://doi.org/10.1007/s11270-015-2401-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2401-y

Keywords

  • Biochar
  • Cadmium
  • Acid rain
  • Soil enzymes
  • Aging