Skip to main content
Log in

Treatment of Nitrate-Rich Saline Effluent by Using Citrate-Rich Waste as Carbon Source and Electron Donor in a Single-Stage Activated Sludge Reactor

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Disposing of nitrate-containing effluents from seawater-fed intensive aquacultural applications is a major environmental problem. A possible solution is to mix nitrate-rich effluents from marine recirculating aquaculture systems (RASs) with citrate-rich liquid wastes (CLW), a common by-product of the food industry. Where possible, such strategy can alleviate two environmental problems simultaneously, in a cost-effective fashion. However, concerns are often raised regarding secondary pollution stemming from the use of CLW, particularly related to phosphorus and heavy metals. This work showed that both phosphorus and heavy metal were completely absorbed by the bacterial sludge generated in the process, indicating low environmental risk associated with the disposal of the treated effluent to the environment. Operation of continuous stirred-tank reactor (CSTR) single-sludge denitrification reactor with CLW as electron and carbon donor resulted in high nitrate removal efficiency (>95 %) and denitrification rate of up to 1.6 g NO3-N L−1 reactor day−1 along with low bacterial biomass yield [0.23 g chemical oxygen demand (COD) new cells g−1 COD citrate]. Moreover, the use of CLW was found to be environmentally safe and equally efficient to the use of traditional, costly carbon sources such as methanol and acetic acid, rendering this alternative attractive for treatment of nitrate-rich saline effluents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • APHA (2005) Standard methods for the examination of water and wastewater. (American Public Health Association/American Water Works Association/Water Environment Federation, Ed.) (21st ed.). Washington, DC, USA

  • Boyd, C. E. (1990). Water quality in ponds for aquaculture (1st ed., p. 482). Alabama: Auburn University.

    Google Scholar 

  • Boyd, C. E. (1995). Bottom soils, sediment, and pond aquaculture. Boston: Springer US.

    Book  Google Scholar 

  • Cooke, G. D., Welch, E. B., Peterson, S. A., & Nichols, S. A. (2006). Restoration and management of lakes and reservoirs (3rd ed.). Boca Raton: CRC press.

    Google Scholar 

  • Dupla, M., Comeau, Y., Parent, S., Villemur, R., & Jolicoeur, M. (2006). Design optimization of a self-cleaning moving-bed bioreactor for seawater denitrification. Water Research, 40(2), 249–258.

    Article  CAS  Google Scholar 

  • Fennessy, M. S., & Cronk, J. K. (1997). The effectiveness and restoration potential of riparian ecotones for the management of nonpoint source pollution, particularly nitrate. Critical Reviews in Environmental Science and Technology, 27(4), 285–317. doi:10.1080/10643389709388502.

    Article  CAS  Google Scholar 

  • Foglar, L., Briski, F., Sipos, L., & Vukovic, M. (2005). High nitrate removal from synthetic wastewater with the mixed bacterial culture. Bioresource Technology, 96(8), 879–888.

    Article  CAS  Google Scholar 

  • Gran, G. (1952). Determination of the equivalence point in potentiometric titrations. Part II. The Analyst, 77(920), 661. doi:10.1039/an9527700661.

    Article  CAS  Google Scholar 

  • Gross, A., Nemirovsky, A., Zilberg, D., Khaimov, A., Brenner, A., Snir, E., et al. (2003). Soil nitrifying enrichments as biofilter starters in intensive recirculating saline water aquaculture. Aquaculture, 223(1–4), 51–62.

    Article  Google Scholar 

  • Henkens, P. L. C. M., & Van Keulen, H. (2001). Mineral policy in the Netherlands and nitrate policy within the European community. NJAS - Wageningen Journal of Life Sciences, 49(2–3), 117–134. doi:10.1016/S1573-5214(01)80002-6.

    Article  Google Scholar 

  • Henze, M., Harremoes, P., & Jansen, J. (1996). Wastewater treatment: biological and chemical processes (2nd ed., p. 383). Berlin: Springer.

    Google Scholar 

  • Inbar Y (2007) Wastewater reuse—risk assessment, decision-making and environmental security. (M. K. Zaidi, Ed.). Dordrecht: Springer Netherlands. doi:10.1007/978-1-4020-6027-4

  • Kissil, G. W., & Lupatsch, I. (2004). Successful replacement of fishmeal by plant proteins in diets for the gilthead seabream, Sparus aurata L. Israeli Journal of Aquaculture-Bamidgeh, 56(3), 188–199.

    Google Scholar 

  • Klas, S., Mozes, N., & Lahav, O. (2006). Conceptual, stoichiometry-based model for single-sludge denitrification in recirculating aquaculture systems. Aquaculture, 259(1–4), 328–341.

    Article  Google Scholar 

  • Kronvang, B., Andersen, H. E., Børgesen, C., Dalgaard, T., Larsen, S. E., Bøgestrand, J., & Blicher-Mathiasen, G. (2008). Effects of policy measures implemented in Denmark on nitrogen pollution of the aquatic environment. Environmental Science & Policy, 11(2), 144–152. doi:10.1016/j.envsci.2007.10.007.

    Article  Google Scholar 

  • Lee, P. G., Lea, R. N., Dohmann, E., Prebilsky, W., Turk, P. E., Ying, H., & Whitson, J. L. (2000). Denitrification in aquaculture systems: an example of a fuzzy logic control problem. Aquacultural Engineering, 23(1–3), 37–59.

    Article  Google Scholar 

  • Li, Y., Gu, G., Zhao, J., & Yu, H. (2001). Anoxic degradation of nitrogenous heterocyclic compounds by acclimated activated sludge. Process Biochemistry, 37(1), 81–86. doi:10.1016/S0032-9592(01)00176-5.

    Article  CAS  Google Scholar 

  • Metcalf & Eddy (2003) Wastewater engineering-treatment and reuses. (Tchobanglous G, Franklin L. Burton, & H. D. Stensel, Eds.) Metcalf and Eddy (4th, p. 1819). McGraw-Hill

  • Miller, J. R., Hudson-Edwards, K. A., Lechler, P. J., Preston, D., & Macklin, M. G. (2004). Heavy metal contamination of water, soil and produce within riverine communities of the Río Pilcomayo basin, Bolivia. Science of the Total Environment, 320(2–3), 189–209. doi:10.1016/j.scitotenv.2003.08.011.

    Article  CAS  Google Scholar 

  • Mirzoyan, N., & Gross, A. (2013). Use of UASB reactors for brackish aquaculture sludge digestion under different conditions. Water Research, 47(8), 2843–2850. doi:10.1016/j.watres.2013.02.050.

    Article  CAS  Google Scholar 

  • Mirzoyan, N., McDonald, R. C., & Gross, A. (2012). Anaerobic treatment of brackishwater aquaculture sludge: an alternative to waste stabilization ponds. Journal of the World Aquaculture Society, 43(2), 238–248. doi:10.1111/j.1749-7345.2012.00554.x.

    Article  Google Scholar 

  • Smith, V. H., Tilman, G. D., & Nekola, J. C. (1999). Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environmental Pollution, 100(1–3), 179–196.

    Article  CAS  Google Scholar 

  • Timmermans, P., & Van Haute, A. (1983). Denitrification with methanol: fundamental study of the growth and denitrification capacity of Hyphomicrobium sp. Water Research, 17(10), 1249–1255.

    Article  CAS  Google Scholar 

  • Timmons MB, & Ebeling J (2007) Recirculating aquaculture. (01–007, Ed.) (p. 975). New York: NRAC Publication

  • USEPA (2012) Guidelines for water reuse. United States

  • Van Rijn, J. (1996). The potential for integrated biological treatment systems in recirculating fish culture—a review. Aquaculture, 139(3–4), 181–201.

    Article  Google Scholar 

  • Van Rijn, J., Tal, Y., & Schreier, H. J. (2006). Denitrification in recirculating systems: theory and applications. Aquacultural Engineering, 34(3), 364–376.

    Article  Google Scholar 

  • Wakida, F. T., & Lerner, D. N. (2005). Non-agricultural sources of groundwater nitrate: a review and case study. Water Research, 39(1), 3–16. doi:10.1016/j.watres.2004.07.026.

    Article  CAS  Google Scholar 

  • Yuan, Q., & Oleszkiewicz, J. (2010). Interaction between denitrification and phosphorus removal in a sequencing batch reactor phosphorus removal system. Water Environment Research, 82(6), 536–540. doi:10.2175/106143009X12529484815476.

    Article  CAS  Google Scholar 

  • Zietz, B., Dieter, H., Lakomek, M., Schnieder, H., Kebler-Gaedtke, B., & Dunnkelberg, H. (2003). Epidemiological investigation on chronic copper toxicity to children exposed via the public drinking water supply. Science of the Total Environment, 302(1–3), 127–144. doi:10.1016/S0048-9697(02)00399-6.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Gross.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fox, S., Mozes, N., Lahav, O. et al. Treatment of Nitrate-Rich Saline Effluent by Using Citrate-Rich Waste as Carbon Source and Electron Donor in a Single-Stage Activated Sludge Reactor. Water Air Soil Pollut 226, 134 (2015). https://doi.org/10.1007/s11270-015-2399-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2399-1

Keywords

Navigation