Skip to main content

Advertisement

Log in

The Treatment Performance and the Bacteria Preservation of Anammox: A Review

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Because of the low energy costs in the absence of the need for aeration, the non-requirement of a carbon source and alkali, and the reduced production of excess sludge, anaerobic ammonia oxidation (Anammox) has been extensively studied as an alternative to the conventional nitrification–denitrification pathway for biological nitrogen removal from wastewater. However, many challenges remain which need to be overcome to prepare the process for engineering application. These include the long doubling time of Anammox bacteria/autotrophic ammonia-oxidizing bacteria (AAOB), the low tolerance capacity to substrate concentration, and high sensitivity to various environmental factors. This review article focuses on the main drawbacks of the Anammox process and evaluates the progress made to date with regard to the enrichment of AAOB and the treatment performance of the Anammox process itself. The factors affecting the nitrogen removal performance of the Anammox process, such as substrate concentration, organic matters, and variation of temperature, are also reviewed and discussed. Finally, the need for the development of long-term storage methods for AAOB is addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abma, W. R., Schultz, C. E., Mulder, J. W., van der Star, W. R. L., Strous, M., Tokutomi, T., & van Loosdrecht, M. C. M. (2007). Full-scale granular sludge Anammox process. Water Science and Technology, 55, 27–33.

    CAS  Google Scholar 

  • Aktan, C. K., Yapsakli, K., & Mertoglu, B. (2012). Inhibitory effects of free ammonia on Anammox bacteria. Biodegradation, 23, 751–762.

    CAS  Google Scholar 

  • Ali, M., Oshiki, M., Awata, T., Isobe, K., Kimura, Z., Yoshikawa, H., Hira, D., Kindaichi, T., Satoh, H. & Fujii, T. (2015). Physiological characterization of anaerobic ammonium oxidizing bacterium ‘Candidatus Jettenia caeni’. Environmental Microbiology. doi:10.1111/1462-2920.12674.

  • Amano, T., Yoshinaga, I., Okada, K., Yamagishi, T., Ueda, S., Obuchi, A., Sako, Y., & Suwa, Y. (2007). Detection of anammox activity and diversity of anammox bacteria-related 16S rRNA genes in coastal marine sediment in Japan. Microbes and Environments, 22, 232–242.

    Google Scholar 

  • Bettazzi, E., Caffaz, S., Vannini, C., & Lubello, C. (2010). Nitrite inhibition and intermediates effects on Anammox bacteria: a batch-scale experimental study. Process Biochemistry, 45, 573–580.

    CAS  Google Scholar 

  • Byrne, N., Strous, M., Crepeau, V., Kartal, B., Birrien, J. L., Schmid, M., Lesongeur, F., Schouten, S., Jaeschke, A., Jetten, M., Prieur, D., & Godfroy, A. (2009). Presence and activity of anaerobic ammonium-oxidizing bacteria at deep-sea hydrothermal vents. The ISME Journal, 3, 117–123.

    CAS  Google Scholar 

  • Carvajal-Arroyo, J. M., Puyol, D., Li, G. B., Lucero-Acuna, A., Sierra-Alvarez, R., & Field, J. A. (2014). Pre-exposure to nitrite in the absence of ammonium strongly inhibits anammox. Water Research, 48, 52–60.

    CAS  Google Scholar 

  • Chamchoi, N., & Nitisoravut, S. (2007). Anammox enrichment from different conventional sludges. Chemosphere, 66, 2225–2232.

    CAS  Google Scholar 

  • Chen, J., Zheng, P., Yu, Y., Tang, C., & Mahmood, Q. (2010). Promoting sludge quantity and activity results in high loading rates in Anammox UBF. Bioresource Technology, 101, 2700–2705.

    CAS  Google Scholar 

  • Cho, S., Takahashi, Y., Fujii, N., Yamada, Y., Satoh, H., & Okabe, S. (2010). Nitrogen removal performance and microbial community analysis of an anaerobic up-flow granular bed anammox reactor. Chemosphere, 78, 1129–1135.

    CAS  Google Scholar 

  • Dapena-Mora, A., Van Hulle, S. W. H., Campos, J. L., Mendez, R., Vanrolleghem, P. A., & Jetten, M. (2004). Enrichment of Anammox biomass from municipal activated sludge: experimental and modelling results. Journal of Chemical Technology and Biotechnology, 79, 1421–1428.

    CAS  Google Scholar 

  • Dapena-Mora, A., Fernandez, I., Campos, J. L., Mosquera-Corral, A., Mendez, R., & Jetten, M. S. M. (2007). Evaluation of activity and inhibition effects on Anammox process by batch tests based on the nitrogen gas production. Enzyme and Microbial Technology, 40, 859–865.

    CAS  Google Scholar 

  • Dapena-Mora, A., Vazquez-Padin, J. R., Campos, J. L., Mosquera-Corral, A., Jetten, M. S. M., & Mendez, R. (2010). Monitoring the stability of an Anammox reactor under high salinity conditions. Biochemical Engineering Journal, 51, 167–171.

    CAS  Google Scholar 

  • deGraaf, A. A. V., deBruijn, P., Robertson, L. A., Jetten, M. S. M., & Kuenen, J. G. (1996). Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor. Microbiology+Uk, 142, 2187–2196.

    Google Scholar 

  • Ding, S., Zheng, P., Lu, H., Chen, J., Mahmood, Q., & Abbas, G. (2013). Ecological characteristics of anaerobic ammonia oxidizing bacteria. Applied Microbiology and Biotechnology, 97, 1841–1849.

    CAS  Google Scholar 

  • Dosta, J., Fernandez, I., Vazquez-Padin, J. R., Mosquera-Corral, A., Campos, J. L., Mata-Alvarez, J., & Mendez, R. (2008). Short- and long-term effects of temperature on the Anammox process. Journal of Hazardous Materials, 154, 688–693.

    CAS  Google Scholar 

  • Egli, K., Fanger, U., Alvarez, P. J. J., Siegrist, H., van der Meer, J. R., & Zehnder, A. J. B. (2001). Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium-rich leachate. Archives of Microbiology, 175, 198–207.

    CAS  Google Scholar 

  • Egli, K., Bosshard, F., Werlen, C., Lais, P., Siegrist, H., Zehnder, A., & Van der Meer, J. (2003). Microbial composition and structure of a rotating biological contactor biofilm treating ammonium-rich wastewater without organic carbon. Microbial Ecology, 45, 419–432.

    CAS  Google Scholar 

  • Fernandez, I., Mosquera-Corral, A., Campos, J. L., & Mendez, R. (2009). Operation of an Anammox SBR in the presence of two broad-spectrum antibiotics. Process Biochemistry, 44, 494–498.

    CAS  Google Scholar 

  • Fernandez, I., Dosta, J., Fajardo, C., Campos, J. L., Mosquera-Corral, A., & Mendez, R. (2012). Short- and long-term effects of ammonium and nitrite on the Anammox process. Journal of Environmental Management, 95(Suppl), S170–174.

    CAS  Google Scholar 

  • Gilbert, E. M., Agrawal, S., Karst, S. M., Horn, H., Nielsen, P. H., & Lackner, S. (2014). Low temperature partial nitritation/Anammox in a moving bed biofilm reactor treating low strength wastewater. Environmental Science and Technology, 48, 8784–8792.

    CAS  Google Scholar 

  • Gonzalez-Gil, G., Sougrat, R., Behzad, A. R., Lens, P. N. & Saikaly, P. E. (2014). Microbial community composition and ultrastructure of granules from a full-scale Anammox reactor. Microbial Ecology. 1–14. doi:10.1007/s00248-014-0546-7.

  • Gonzalez-Martinez, A., Rodriguez-Sanchez, A., Muñoz-Palazon, B., Garcia-Ruiz, M.-J., Osorio, F., van Loosdrecht, M. C. & Gonzalez–Lopez, J. (2014). Microbial community analysis of a full-scale DEMON bioreactor. Bioprocess and Biosystems Engineering, 38, 499–508. doi:10.1007/s00449-014-1289-z.

  • Guven, D., Dapena, A., Kartal, B., Schmid, M. C., Maas, B., van de Pas-Schoonen, K., Sozen, S., Mendez, R., Op den Camp, H. J. M., Jetten, M. S. M., Strous, M., & Schmidt, I. (2005). Propionate oxidation by and methanol inhibition of anaerobic ammonium-oxidizing bacteria. Applied and Environmental Microbiology, 71, 1066–1071.

    Google Scholar 

  • Hendrickx, T. L. G., Kampman, C., Zeeman, G., Temmink, H., Hu, Z. Y., Kartal, B., & Buisman, C. J. N. (2014). High specific activity for anammox bacteria enriched from activated sludge at 10 degrees C. Bioresource Technology, 163, 214–221.

    CAS  Google Scholar 

  • Heylen, K., Ettwig, K., Hu, Z. Y., Jetten, M., & Kartal, B. (2012). Rapid and simple cryopreservation of anaerobic ammonium-oxidizing bacteria. Applied and Environmental Microbiology, 78, 3010–3013.

    CAS  Google Scholar 

  • Hsu, S., Lai, Y., Hsieh, P., Cheng, P., Wong, S. & Hung, C. (2014). Successful enrichment of a rarely found Candidatus Anammoxoglobus propionicus from leachate sludge. Journal of Microbiology and Biotechnology, 24, 879-887.

  • Hu, B. L., Zheng, P., Tang, C. J., Chen, J. W., van der Biezen, E., Zhang, L., Ni, B. J., Jetten, M. S. M., Yan, J., Yu, H. Q., & Kartal, B. (2010). Identification and quantification of anammox bacteria in eight nitrogen removal reactors. Water Research, 44, 5014–5020.

    CAS  Google Scholar 

  • Hu, Z. Y., Lotti, T., de Kreuk, M., Kleerebezem, R., van Loosdrecht, M., Kruit, J., Jetten, M. S. M., & Kartal, B. (2013). Nitrogen removal by a nitritation-Anammox bioreactor at low temperature. Applied and Environmental Microbiology, 79, 2807–2812.

    CAS  Google Scholar 

  • Humbert, S., Tarnawski, S., Fromin, N., Mallet, M. P., Aragno, M., & Zopfi, J. (2010). Molecular detection of anammox bacteria in terrestrial ecosystems: distribution and diversity. The ISME Journal, 4, 450–454.

    Google Scholar 

  • Isaka, K., Sumino, T., & Tsuneda, S. (2007). High nitrogen removal performance at moderately low temperature utilizing anaerobic ammonium oxidation reactions. Journal of Bioscience and Bioengineering, 103, 486–490.

    CAS  Google Scholar 

  • Isaka, K., Date, Y., Kimura, Y., Sumino, T., & Tsuneda, S. (2008). Nitrogen removal performance using anaerobic ammonium oxidation at low temperatures. FEMS Microbiology Letters, 282, 32–38.

    CAS  Google Scholar 

  • Jaeschke, A., Abbas, B., Zabel, M., Hopmans, E. C., Schouten, S., & Damste, J. S. S. (2010). Molecular evidence for anaerobic ammonium-oxidizing (Anammox) bacteria in continental shelf and slope sediments off Northwest Africa. Limnology and Oceanography, 55, 365–376.

    CAS  Google Scholar 

  • Jaroszynski, L. W., Cicek, N., Sparling, R., & Oleszkiewicz, J. A. (2012). Impact of free ammonia on Anammox rates (anoxic ammonium oxidation) in a moving bed biofilm reactor. Chemosphere, 88, 188–195.

    CAS  Google Scholar 

  • Jenni, S., Vlaeminck, S. E., Morgenroth, E., & Udert, K. M. (2014). Successful application of nitritation/Anammox to wastewater with elevated organic carbon to ammonia ratios. Water Research, 49, 316–326.

    CAS  Google Scholar 

  • Jensen, M. M., Thamdrup, B., & Dalsgaard, T. (2007). Effects of specific inhibitors on Anammox and denitrification in marine sediments. Applied and Environmental Microbiology, 73, 3151–3158.

    CAS  Google Scholar 

  • Jin, R. C., Hu, B. L., Zheng, P., Qaisar, M., Hu, A. H., & Islam, E. (2008). Quantitative comparison of stability of Anammox process in different reactor configurations. Bioresource Technology, 99, 1603–1609.

    CAS  Google Scholar 

  • Jin, R. C., Ma, C., Mahmood, Q., Yang, G. F., & Zheng, P. (2011). Anammox in a UASB reactor treating saline wastewater. Process Safety and Environmental Protection, 89, 342–348.

    CAS  Google Scholar 

  • Jin, R. C., Yang, G. F., Yu, J. J., & Zheng, P. (2012). The inhibition of the Anammox process: a review. Chemical Engineering Journal, 197, 67–79.

    CAS  Google Scholar 

  • Jin, R.-C., Xing, B.-S., Yu, J.-J., Qin, T.-Y., & Chen, S.-X. (2013a). The importance of the substrate ratio in the operation of the Anammox process in upflow biofilter. Ecological Engineering, 53, 130–137.

    Google Scholar 

  • Jin, R. C., Zhang, Q. Q., Yang, G. F., Xing, B. S., Ji, Y. X., & Chen, H. (2013b). Evaluating the recovery performance of the ANAMMOX process following inhibition by phenol and sulfide. Bioresource Technology, 142, 162–170.

    CAS  Google Scholar 

  • Jin, R. C., Yu, J. J., Ma, C., Yang, G. F., Zhang, J., Chen, H., Zhang, Q. Q., Ji, Y. X., & Hu, B. L. (2014). Transient and long-term effects of bicarbonate on the Anammox process. Applied Microbiology and Biotechnology, 98, 1377–1388.

    CAS  Google Scholar 

  • Jung, J. Y., Kang, S. H., Chung, Y. C., & Ahn, D. H. (2007). Factors affecting the activity of Anammox bacteria during start up in the continuous culture reactor. Water Science and Technology, 55, 459–468.

    CAS  Google Scholar 

  • Kartal, B., Koleva, M., Arsov, R., van der Star, W., Jetten, M. S. M., & Strous, M. (2006). Adaptation of a freshwater Anammox population to high salinity wastewater. Journal of Biotechnology, 126, 546–553.

    CAS  Google Scholar 

  • Kartal, B., Rattray, J., van Niftrik, L. A., van de Vossenberg, J., Schmid, M. C., Webb, R. I., Schouten, S., Fuerst, J. A., Damste, J. S. S., Jetten, M. S. M., & Strous, M. (2007). Candidatus “Anammoxoglobus propionicus” a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria. Systematic and Applied Microbiology, 30, 39–49.

    CAS  Google Scholar 

  • Kartal, B., van Niftrik, L., Rattray, J., de Vossenberg, J. L. C. M. V., Schmid, M. C., Damste, J. S. S., Jetten, M. S. M., & Strous, M. (2008). Candidatus ‘Brocadia fulgida’: an autofluorescent anaerobic ammonium oxidizing bacterium. FEMS Microbiology Ecology, 63, 46–55.

    CAS  Google Scholar 

  • Kartal, B., Kuenen, J. G., & van Loosdrecht, M. C. M. (2010). Sewage treatment with Anammox. Science, 328, 702–703.

    CAS  Google Scholar 

  • Khramenkov, S., Kozlov, M., Kevbrina, M., Dorofeev, A., Kazakova, E., Grachev, V., Kuznetsov, B., Polyakov, D. Y., & Nikolaev, Y. A. (2013). A novel bacterium carrying out anaerobic ammonium oxidation in a reactor for biological treatment of the filtrate of wastewater fermented sludge. Microbiology, 82, 628–636.

    CAS  Google Scholar 

  • Kimura, Y., Isaka, K., Kazama, F., & Sumino, T. (2010). Effects of nitrite inhibition on anaerobic ammonium oxidation. Applied Microbiology and Biotechnology, 86, 359–365.

    CAS  Google Scholar 

  • Kimura, Y., Isaka, K., & Kazama, F. (2011). Effects of inorganic carbon limitation on anaerobic ammonium oxidation (Anammox) activity. Bioresource Technology, 102, 4390–4394.

    CAS  Google Scholar 

  • Kuenen, J. G., & Jetten, M. S. M. (2001). Extraordinary anaerobic ammonium-oxidizing bacteria. ASM News, 67, 456–463.

    Google Scholar 

  • Kumar, M., & Lin, J. G. (2010). Co-existence of Anammox and denitrification for simultaneous nitrogen and carbon removal—strategies and issues. Journal of Hazardous Materials, 178, 1–9.

    CAS  Google Scholar 

  • Kuypers, M. M., Sliekers, A. O., Lavik, G., Schmid, M., Jørgensen, B. B., Kuenen, J. G., Damsté, J. S. S., Strous, M., & Jetten, M. S. (2003). Anaerobic ammonium oxidation by Anammox bacteria in the Black Sea. Nature, 422, 608–611.

    CAS  Google Scholar 

  • Li, H., Chen, S., Mu, B. Z., & Gu, J. D. (2010). Molecular detection of anaerobic ammonium-oxidizing (Anammox) bacteria in high-temperature petroleum reservoirs. Microbial Ecology, 60, 771–783.

    CAS  Google Scholar 

  • Li, H. S., Zhou, S. Q., Ma, W. H., Huang, G. T., & Xu, B. (2012). Fast start-up of Anammox reactor: operational strategy and some characteristics as indicators of reactor performance. Desalination, 286, 436–441.

    CAS  Google Scholar 

  • Li, X., Huang, Y., Yuan, Y., & Zhang, L. (2013). Effect of nutrition and time on Anammox sludge activity preservation at room temperature. Chinese Journal of Environmental Engingeering, 7(9), 3333–3338.

    CAS  Google Scholar 

  • Liao, D. X., Li, X. M., Yang, Q., Zeng, G. M., Guo, L., & Yue, X. (2008). Effect of inorganic carbon on anaerobic ammonium oxidation enriched in sequencing batch reactor. Journal of Environmental Sciences (China), 20, 940–944.

    CAS  Google Scholar 

  • Liu, S. T., Yang, F. L., Gong, Z., Meng, F. G., Chen, H. H., Xue, Y., & Furukawa, K. J. (2008). Application of anaerobic ammonium-oxidizing consortium to achieve completely autotrophic ammonium and sulfate removal. Bioresource Technology, 99, 6817–6825.

    CAS  Google Scholar 

  • Liu, C., Yamamoto, T., Nishiyama, T., Fujii, T., & Furukawa, K. (2009). Effect of salt concentration in Anammox treatment using non woven biomass carrier. Journal of Bioscience and Bioengineering, 107, 519–523.

    CAS  Google Scholar 

  • Lotti, T., van der Star, W. R. L., Kleerebezem, R., Lubello, C., & van Loosdrecht, M. C. M. (2012). The effect of nitrite inhibition on the Anammox process. Water Research, 46, 2559–2569.

    CAS  Google Scholar 

  • Lotti, T., Kleerebezem, R., Hu, Z., Kartal, B., Jetten, M. S. M., & van Loosdrecht, M. C. M. (2014a). Simultaneous partial nitritation and Anammox at low temperature with granular sludge. Water Research, 66, 111–121.

    CAS  Google Scholar 

  • Lotti, T., Kleerebezem, R., Lubello, C., & van Loosdrecht, M. C. M. (2014b). Physiological and kinetic characterization of a suspended cell Anammox culture. Water Research, 60, 1–14.

    CAS  Google Scholar 

  • Ma, B., Peng, Y. Z., Zhang, S. J., Wang, J. M., Gan, Y. P., Chang, J., Wang, S. Y., Wang, S. Y., & Zhu, G. B. (2013). Performance of Anammox UASB reactor treating low strength wastewater under moderate and low temperatures. Bioresource Technology, 129, 606–611.

    CAS  Google Scholar 

  • Molinuevo, B., Garcia, M. C., Karakashev, D., & Angelidaki, I. (2009). Anammox for ammonia removal from pig manure effluents: effect of organic matter content on process performance. Bioresource Technology, 100, 2171–2175.

    CAS  Google Scholar 

  • Mulder, A., Vandegraaf, A. A., Robertson, L. A., & Kuenen, J. G. (1995). Anaerobic ammonium oxidation discovered in a denitrifying fluidized-bed reactor. FEMS Microbiology Ecology, 16, 177–183.

    CAS  Google Scholar 

  • Nakajima, J., Sakka, M., Kimura, T., Furukawa, K., & Sakka, K. (2008). Enrichment of Anammox bacteria from marine environment for the construction of a bioremediation reactor. Applied Microbiology and Biotechnology, 77, 1159–1166.

    CAS  Google Scholar 

  • Ni, S. Q. & Zhang, J. (2013). Anaerobic ammonium oxidation: from laboratory to full-scale application. Biomed Research International, 2013, p. 10. doi:10.1155/2013/469360.

  • Ni, B. J., Hu, B. L., Fang, F., Xie, W. M., Kartal, B., Liu, X. W., Sheng, G. P., Jetten, M., Zheng, P., & Yu, H. Q. (2010a). Microbial and physicochemical characteristics of compact anaerobic ammonium-oxidizing granules in an upflow anaerobic sludge blanket reactor. Applied and Environmental Microbiology, 76, 2652–2656.

    CAS  Google Scholar 

  • Ni, S. Q., Fessehaie, A., Lee, P. H., Gao, B. Y., Xu, X., & Sung, S. W. (2010b). Interaction of Anammox bacteria and inactive methanogenic granules under high nitrogen selective pressure. Bioresource Technology, 101, 6910–6915.

    CAS  Google Scholar 

  • Ni, S. Q., Lee, P. H., Fessehaie, A., Gao, B. Y., & Sung, S. W. (2010c). Enrichment and biofilm formation of Anammox bacteria in a non-woven membrane reactor. Bioresource Technology, 101, 1792–1799.

    CAS  Google Scholar 

  • Ni, S. Q., Ni, J. Y., Hu, D. L., & Sung, S. W. (2012). Effect of organic matter on the performance of granular anammox process. Bioresource Technology, 110, 701–705.

    CAS  Google Scholar 

  • Noophan, P., Narinhongtong, P., Wantawin, C., & Munakata-Marr, J. (2012). Effects of oxytetracycline on Anammox activity. Journal of Environmental Science & Health A, 47, 873–877.

    CAS  Google Scholar 

  • Oshiki, M., Shimokawa, M., Fujii, N., Satoh, H., & Okabe, S. (2011). Physiological characteristics of the anaerobic ammonium-oxidizing bacterium ‘Candidatus Brocadia sinica’. Microbiology, 157, 1706–1713.

    CAS  Google Scholar 

  • Park, S., & Bae, W. (2009). Modeling kinetics of ammonium oxidation and nitrite oxidation under simultaneous inhibition by free ammonia and free nitrous acid. Process Biochemistry, 44, 631–640.

    CAS  Google Scholar 

  • Pathak, B. K., Kazama, F., Tanaka, Y., Mori, K., & Sumino, T. (2007). Quantification of anammox populations enriched in an immobilized microbial consortium with low levels of ammonium nitrogen and at low temperature. Applied Microbiology and Biotechnology, 76, 1173–1179.

    CAS  Google Scholar 

  • Persson, F., Sultana, R., Suarez, M., Hermansson, M., Plaza, E., & Wilen, B. M. (2014). Structure and composition of biofilm communities in a moving bed biofilm reactor for nitritation-Anammox at low temperatures. Bioresource Technology, 154, 267–273.

    CAS  Google Scholar 

  • Puyol, D., Carvajal-Arroyo, J. M., Sierra-Alvarez, R., & Field, J. A. (2014). Nitrite (not free nitrous acid) is the main inhibitor of the anammox process at common pH conditions. Biotechnology Letters, 36, 547–551.

    CAS  Google Scholar 

  • Quan, Z. X., Rhee, S. K., Zuo, J. E., Yang, Y., Bae, J. W., Park, J. R., Lee, S. T., & Park, Y. H. (2008). Diversity of ammonium‐oxidizing bacteria in a granular sludge anaerobic ammonium‐oxidizing (Anammox) reactor. Environmental Microbiology, 10, 3130–3139.

    CAS  Google Scholar 

  • Rothrock, M. J., Vanotti, M. B., Szogi, A. A., Gonzalez, M. C. G., & Fujii, T. (2011). Long-term preservation of Anammox bacteria. Applied Microbiology and Biotechnology, 92, 147–157.

    CAS  Google Scholar 

  • Rysgaard, S., Glud, R. N., Risgaard-Petersen, N., & Dalsgaard, T. (2004). Denitrification and Anammox activity in Arctic marine sediments. Limnology and Oceanography, 49, 1493–1502.

    CAS  Google Scholar 

  • Siegrist, H., Salzgeber, D., Eugster, J., & Joss, A. (2008). Anammox brings WWTP closer to energy autarky due to increased biogas production and reduced aeration energy for N-removal. Water Science and Technology, 57, 383–388.

    CAS  Google Scholar 

  • Sliekers, A. O., Third, K. A., Abma, W., Kuenen, J. G., & Jetten, M. S. M. (2003). CANON and Anammox in a gas-lift reactor. FEMS Microbiology Letters, 218, 339–344.

    CAS  Google Scholar 

  • Strous, M., Heijnen, J. J., Kuenen, J. G., & Jetten, M. S. M. (1998). The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Applied Microbiology and Biotechnology, 50, 589–596.

    CAS  Google Scholar 

  • Strous, M., Kuenen, J. G., & Jetten, M. S. M. (1999). Key physiology of anaerobic ammonium oxidation. Applied and Environmental Microbiology, 65, 3248–3250.

    CAS  Google Scholar 

  • Szatkowska, B., Cema, G., Plaza, E., Trela, J., & Hultman, B. (2007). A one-stage system with partial nitritation and Anammox processes in the moving-bed biofilm reactor. Water Science and Technology, 55, 19–26.

    CAS  Google Scholar 

  • Tang, C. J., Zheng, P., Mahmood, Q., & Chen, J. W. (2009). Start-up and inhibition analysis of the Anammox process seeded with anaerobic granular sludge. Journal of Industrial Microbiology & Biotechnology, 36, 1093–1100.

    CAS  Google Scholar 

  • Tang, C. J., Zheng, P., Hu, B. L., Chen, J. W., & Wang, C. H. (2010). Influence of substrates on nitrogen removal performance and microbiology of anaerobic ammonium oxidation by operating two UASB reactors fed with different substrate levels. Journal of Hazardous Materials, 181, 19–26.

    CAS  Google Scholar 

  • Tang, C. J., Zheng, P., Wang, C. H., Mahmood, Q., Zhang, J. Q., Chen, X. G., Zhang, L., & Chen, J. W. (2011). Performance of high-loaded Anammox UASB reactors containing granular sludge. Water Research, 45, 135–144.

    CAS  Google Scholar 

  • Tang, C. J., Zheng, P., Chai, L. Y., & Min, X. B. (2013). Thermodynamic and kinetic investigation of anaerobic bioprocesses on Anammox under high organic conditions. Chemical Engineering Journal, 230, 149–157.

    CAS  Google Scholar 

  • Tang, C. J., Zheng, P., Ding, S., & Lu, H. F. (2014). Enhanced nitrogen removal from ammonium-rich wastewater containing high organic contents by coupling with novel high-rate Anammox granules addition. Chemical Engineering Journal, 240, 454–461.

    CAS  Google Scholar 

  • Tao, Y., Gao, D. W., Fu, Y., Wu, W. M., & Ren, N. Q. (2012). Impact of reactor configuration on anammox process start-up: MBR versus SBR. Bioresource Technology, 104, 73–80.

    CAS  Google Scholar 

  • Third, K. A., Paxman, J., Schmid, M., Strous, M., Jetten, M. S. M., & Cord-Ruwisch, R. (2005). Enrichment of Anammox from activated sludge and its application in the CANON process. Microbial Ecology, 49, 236–244.

    CAS  Google Scholar 

  • Toh, S. K., & Ashbolt, N. J. (2002). Adaptation of anaerobic ammonium-oxidising consortium to synthetic coke-ovens wastewater. Applied Microbiol and Biotechnology, 59, 344–352.

    CAS  Google Scholar 

  • Toh, S. K., Webb, R. I., & Ashbolt, N. J. (2002). Enrichment of autotrophic anaerobic ammonium-oxidizing consortia from various wastewaters. Microbial Ecology, 43, 154–167.

    CAS  Google Scholar 

  • Tsushima, I., Ogasawara, Y., Kindaichi, T., Satoh, H., & Okabe, S. (2007). Development of high-rate anaerobic ammonium-oxidizing (Anammox) biofilm reactors. Water Research, 41, 1623–1634.

    CAS  Google Scholar 

  • van de Vossenberg, J., Woebken, D., Maalcke, W. J., Wessels, H. J., Dutilh, B. E., Kartal, B., Janssen‐Megens, E. M., Roeselers, G., Yan, J., & Speth, D. (2013). The metagenome of the marine Anammox bacterium ‘Candidatus Scalindua profunda’ illustrates the versatility of this globally important nitrogen cycle bacterium. Environmental Microbiology, 15, 1275–1289.

    Google Scholar 

  • van der Star, W. R. L., Abma, W. R., Blommers, D., Mulder, J. W., Tokutomi, T., Strous, M., Picioreanu, C., & Van Loosdrecht, M. C. M. (2007). Startup of reactors for anoxic ammonium oxidation: experiences from the first full-scale anammox reactor in Rotterdam. Water Research, 41, 4149–4163.

    Google Scholar 

  • van der Star, W. R. L., Miclea, A. I., van Dongen, U. G. J. M., Muyzer, G., Picioreanu, C., & van Loosdrecht, M. C. M. (2008). The membrane bioreactor: a novel tool to grow Anammox bacteria as free cells. Biotechnology and Bioengineering, 101, 286–294.

    Google Scholar 

  • Vlaeminck, S. E., Geets, J., Vervaeren, H., Boon, N., & Verstraete, W. (2007). Reactivation of aerobic and anaerobic ammonium oxidizers in OLAND biomass after long-term storage. Applied Microbiology and Biotechnology, 74, 1376–1384.

    CAS  Google Scholar 

  • Waki, M., Yasuda, T., Suzuki, K., Sakai, T., Suzuki, N., Suzuki, R., Matsuba, K., Yokoyama, H., Ogino, A., Tanaka, Y., Ueda, S., Takeuchi, M., Yamagishi, T., & Suwa, Y. (2010). Rate determination and distribution of Anammox activity in activated sludge treating swine wastewater. Bioresource Technology, 101, 2685–2690.

    CAS  Google Scholar 

  • Wang, T., Zhang, H. M., Gao, D. W., Yang, F. L., & Zhang, G. Y. (2012). Comparison between MBR and SBR on Anammox start-up process from the conventional activated sludge. Bioresource Technology, 122, 78–82.

    CAS  Google Scholar 

  • Wang, C., Pan, Z., Tang, C., & Chen, T. (2013). Effects of intermittent starvation on preservation characteristics of Anammox bacteria. Acta Scientiae Circumstantiae, 33(1), 36–43.

    Google Scholar 

  • Wett, B. (2007). Development and implementation of a robust deammonification process. Water Science and Technology, 56, 81–88.

    CAS  Google Scholar 

  • Xiong, L., Wang, Y. Y., Tang, C. J., Chai, L. Y., Xu, K. Q., Song, Y. X., Ali, M. & Zheng, P. (2013). Start-up characteristics of a granule-based Anammox UASB reactor seeded with anaerobic granular sludge. Biomed Research International, 2013, p. 9. doi:10.1155/2013/396487.

  • Yang, G. F., & Jin, R. C. (2012). The joint inhibitory effects of phenol, copper (II), oxytetracycline (OTC) and sulfide on Anammox activity. Bioresource Technology, 126, 187–192.

    CAS  Google Scholar 

  • Yang, G. F., & Jin, R. C. (2013). Reactivation of effluent granular sludge from a high-rate Anammox reactor after storage. Biodegradation, 24, 13–32.

    CAS  Google Scholar 

  • Yang, J. C., Zhang, L., Fukuzaki, Y., Hira, D., & Furukawa, K. (2010). High-rate nitrogen removal by the Anammox process with a sufficient inorganic carbon source. Bioresource Technology, 101, 9471–9478.

    CAS  Google Scholar 

  • Yang, J. C., Zhang, L., Hira, D., Fukuzaki, Y., & Furukawa, K. (2011). Anammox treatment of high-salinity wastewater at ambient temperature. Bioresource Technology, 102, 2367–2372.

    CAS  Google Scholar 

  • Yang, G. F., Guo, X. L., Chen, S. X., Liu, J. H., Guo, L. X., & Jin, R. C. (2013). The evolution of Anammox performance and granular sludge characteristics under the stress of phenol. Bioresource Technology, 137, 332–339.

    CAS  Google Scholar 

  • Zhang, Z. J., Chen, S. H., Wu, P., Lin, L. F., & Luo, H. Y. (2010). Start-up of the Canon process from activated sludge under salt stress in a sequencing batch biofilm reactor (SBBR). Bioresource Technology, 101, 6309–6314.

    CAS  Google Scholar 

  • Zhang, Q. Q., Chen, H., Liu, J. H., Yang, B. E., Ni, W. M., & Jin, R. C. (2014). The robustness of Anammox process under the transient oxytetracycline (OTC) shock. Bioresource Technology, 153, 39–46.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by Japan Society for the Promotion of Science (25.03736 and 26.04044) and the Fundamental Research Funds for the Central Universities (2014QNA31).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shilong He or Yu-You Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, S., Niu, Q., Ma, H. et al. The Treatment Performance and the Bacteria Preservation of Anammox: A Review. Water Air Soil Pollut 226, 163 (2015). https://doi.org/10.1007/s11270-015-2394-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2394-6

Keywords

Navigation