Skip to main content
Log in

Heterogenous Lignocellulosic Composites as Bio-Based Adsorbents for Wastewater Dye Removal: a Kinetic Comparison

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Different lignocellulosic substrates consisting of modified barley husk, peanut shells and sawdust were entrapped in calcium alginate beads and used as adsorbents to remove dye compounds from vinasses. For comparative purposes, a biocomposite formulated with humus was also included in this work. Kinetic studies were carried out by applying pseudo-first-order, pseudo-second-order, Chien–Clayton and intraparticle diffusion models, observing a good agreement between theoretical and experimental results when the data were adjusted to pseudo-second-order kinetic model. The results of this study show that lignocellulosic-based biocomposites could be used as an effective and low-cost adsorbent for the removal of dyes from aqueous solutions. Among the heterogeneous biopolymers evaluated, the biocomposite based on barley husk gave the best capacity for dye removal. Moreover, in all cases, it was found that there exists a direct relationship between the capacity of the biocomposites to remove dyes and the percentage of carbon contained in the lignocellulosic residues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Álvarez, M. S., Moscoso, F., Rodríguez, A., Sanromán, M. A., & Deive, F. J. (2013). Novel physico-biological treatment for the remediation of textile dyes-containing industrial effluents. Bioresource Technology, 146, 689–695.

    Article  Google Scholar 

  • Angin, D. (2014). Utilization of activated carbon produced from fruit juice industry solid waste for the adsorption of Yellow 18 from aqueous solutions. Bioresource Technology, 168, 259–266.

    Article  CAS  Google Scholar 

  • Berns, R. S. (2000). Billmeyer and Saltzman’s principles of color technology. New York: Wiley.

    Google Scholar 

  • Bocos, E., Pazos, M., & Sanromán, M. A. (2014). Electro-Fenton decolourization of dyes in batch mode by the use of catalytic activity of iron loaded hydrogels. Journal of Chemical Technology and Biotechnology, 89(8), 1235–1242.

    Article  CAS  Google Scholar 

  • Bustos, G., Carrizales, M. A., Cervantes, E., Vecino, X., & Moldes, A. B. (2014). Treatment of wastewater from sugarcane using entrapped activated carbon. CyTA - Journal of Food, 12(2), 189–194.

    Article  CAS  Google Scholar 

  • Chien, S. H., & Clayton, W. R. (1980). Application of Elovich equation to the kinetics of phosphate release and sorption in soils. Soil Science Society of America Journal, 44(2), 265–268.

    Article  CAS  Google Scholar 

  • Chu, K. H., & Chen, K. M. (2002a). Reuse of activated sludge biomass: I. Removal of basic dyes from wastewater by biomass. Process Biochemistry, 37(6), 595–600.

    Article  CAS  Google Scholar 

  • Chu, K. H., & Chen, K. M. (2002b). Reuse of activated sludge biomass: II. The rate processes for the adsorption of basic dyes on biomass. Process Biochemistry, 37(10), 1129–1134.

    Article  CAS  Google Scholar 

  • De Abreu, D. A. P., Villalba Rodriguez, K., & Cruz, J. M. (2012). Extraction, purification and characterization of an antioxidant extract from barley husks and development of an antioxidant active film for food package. Innovative Food Science and Emerging Technolies, 13, 134–141.

    Article  Google Scholar 

  • Devesa-Rey, R., Bustos, G., Cruz, J. M., & Moldes, A. B. (2011). Optimisation of entrapped activated carbon conditions to remove coloured compounds from winery wastewaters. Bioresource Technoly, 102(11), 6437–6442.

    Article  CAS  Google Scholar 

  • Ding, Z., Yu, R., Hu, X., Chen, Y., & Zhang, Y. (2014). Graft copolymerization of epichlorohydrin and ethylenediamine onto cellulose derived from agricultural by-products for adsorption of Pb(II) in aqueous solution. Cellulose, 21, 1459–1469.

    Article  CAS  Google Scholar 

  • Elovich, S. Y., & Larionov, O. G. (1962a). Theory of adsorption from nonelectrolyte solutions on solid adsorbents—1. Simplified analysis of the equation of the adsorption isotherm from solutions. Bulletin of the Academy of Sciences of the USSR, Division of Chemical Science, 11(2), 191–197.

    Article  Google Scholar 

  • Elovich, S. Y., & Larionov, O. G. (1962b). Theory of adsorption from nonelectrolyte solutions on solid adsorbents—2. Experimental verification of the equation for the adsorption isotherm from solutions. Bulletin of the Academy of Sciences of the USSR, Division of Chemical Science, 11(2), 198–203.

    Article  Google Scholar 

  • Gong, R., Ding, Y., Li, M., Yang, C., Liu, H., & Sun, Y. (2005). Utilization of powdered peanut hull as biosorbent for removal of anionic dyes from aqueous solution. Dyes and Pigments, 64(3), 187–192.

    Article  CAS  Google Scholar 

  • Hassan, A. F., Abdel-Mohsen, A. M., & Fouda, M. M. G. (2014). Comparative study of calcium alginate, activated carbon, and their composite beads on methylene blue adsorption. Carbohydrate Polymers, 102(1), 192–198.

    Article  CAS  Google Scholar 

  • Ho, Y. S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34(5), 451–465.

    Article  CAS  Google Scholar 

  • Ibrahim, S., Fatimah, I., Ang, H.-M., & Wang, S. (2010). Adsorption of anionic dyes in aqueous solution using chemically modified barley straw. Water Science and Technology, 62(5), 1177–1182.

    Article  CAS  Google Scholar 

  • Lagergren, S. (1898). About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens. Handlingar, 24(4), 1–39.

    Google Scholar 

  • Pehlivan, E., Altun, T., & Parlayici, S. (2012). Modified barley straw as a potential biosorbent for removal of copper ions from aqueous solution. Food Chemistry, 135(4), 2229–2234.

    Article  CAS  Google Scholar 

  • Perez-Ameneiro, M., Vecino, X., Barbosa-Pereira, L., Cruz, J. M., & Moldes, A. B. (2014a). Removal of pigments from aqueous solution by a calcium alginate-grape marc biopolymer: a kinetic study. Carbohydrate Polymers, 101(1), 954–960.

    Article  CAS  Google Scholar 

  • Perez-Ameneiro, M., Vecino, X., Vega, L., Devesa-Rey, R., Cruz, J. M., & Moldes, A. B. (2014b). Elimination of micronutrients from winery wastewater using entrapped grape marc in alginate beads. CyTA - Journal of Food, 12(1), 73–79.

    Article  CAS  Google Scholar 

  • Reddy, P. M. K., Mahammadunnisa, S., Ramaraju, B., Sreedhar, B., & Subrahmanyam, C. (2013). Low-cost adsorbents from bio-waste for the removal of dyes from aqueous solution. Environmental Science and Pollution Research, 20(6), 4111–4124.

    Article  Google Scholar 

  • Robinson, T., Chandran, B., & Nigam, P. (2002). Effect of pretreatments of three waste residues, wheat straw, corncobs and barley husks on dye adsorption. Bioresource Technology, 85(2), 119–124.

    Article  CAS  Google Scholar 

  • Sanghi, R., & Verma, P. (2013). Decolorisation of aqueous dye solutions by low-cost adsorbents: a review. Coloration Technology, 129(2), 85–108.

    Article  CAS  Google Scholar 

  • Vecino, X., Devesa-Rey, R., Moldes, A. B., & Cruz, J. M. (2012). Optimization of batch operating conditions for the decolourization of vinasses using surface response methodology. Microchemical Journal, 102, 83–90.

    Article  CAS  Google Scholar 

  • Vecino, X., Devesa-Rey, R., Cruz, J. M., & Moldes, A. B. (2013). Entrapped peat in alginate beads as green adsorbent for the elimination of dye compounds from vinasses. Water, Air and Soil Pollution, 224, 1448.

    Article  Google Scholar 

  • Vecino, X., Devesa-Rey, R., Moldes, A. B., & Cruz, J. M. (2014). Formulation of an alginate-vineyard pruning waste composite as a new eco-friendly adsorbent to remove micronutrients from agroindustrial effluents. Chemosphere, 111, 24–31.

    Article  CAS  Google Scholar 

  • Völz, H. G. (2001). Industrial color testing. New York: Wiley-VCH.

    Book  Google Scholar 

  • Weber, W. J., & Morris, J. C. (1962). Advances in water pollution research: removal of biologically resistant pollutants from waste waters by adsorption. Proceedings of International Conference on Water Pollution Symposium, 2 (pp. 231–266).

    Google Scholar 

Download references

Acknowledgments

We are grateful to the Xunta de Galicia (project GPC, ref. CN2012/277), and Vecino X. gratefully acknowledges the University of Vigo for her predoctoral contract.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Moldes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perez-Ameneiro, M., Bustos, G., Vecino, X. et al. Heterogenous Lignocellulosic Composites as Bio-Based Adsorbents for Wastewater Dye Removal: a Kinetic Comparison. Water Air Soil Pollut 226, 133 (2015). https://doi.org/10.1007/s11270-015-2393-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2393-7

Keywords

Navigation