Skip to main content
Log in

Development of a Method Using Ultrasound-Assisted Emulsification Microextraction for the Determination of Nickel in Water Samples

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In this work, we developed a method based on ultrasound-assisted emulsification microextraction (USAEME) for the determination of nickel by flame atomic absorption spectrometry (FAAS). The method is based on the use of the organic solvent trichloroethylene and 2,2′-thiazolylazo-p-cresol (TAC) as a chelating reagent in a solution containing nickel ions. After ultrasonic emulsification, the mixture is centrifuged to separate the phases. Subsequently, the supernatant is discarded, and the enriched phase is diluted with nitric acid. The nickel content in this new mixture is quantified by FAAS. The following variables were optimized: type of solvent (trichloroethylene), type of chelating reagent (TAC), volume of extraction solvent (100 mL), concentration of chelating reagent (0.015 % w/v), pH (8.0), time of sonication (5.0 min), and time of centrifugation (4.0 min). The limits of detection and quantification were calculated under optimum conditions (0.23 and 0.77 μg L−1, respectively). The enrichment factor obtained was 190. The relative standard deviation (RSD%) of the method (10.0 μg L−1) was 2.3–4.1 %. The proposed method is simple, economical, fast, and efficient for the determination of nickel by FAAS. The procedure was applied to the determination of nickel in certified reference material (BCR-713, wastewater) and water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Afzali, D., Bahadori, B., & Fathirad, F. (2013). Ultrasound-assisted emulsification/microextraction based on solidification of trace amounts of thallium prior to graphite furnace atomic absorption spectrometry determination. Toxicological and Environmental Chemistry, 95(7), 1080–1089.

    Article  CAS  Google Scholar 

  • Al Othman, Z. A., Yilmaz, E., Habila, M., & Soylak, M. (2013). Development of a dispersive liquid-liquid microextraction combined with flame atomic absorption spectrometry using a microinjection system for the enrichment, separation, and determination of nickel in water samples. Desalination and Water Treatment, 51(34–36), 6770–6776.

    Article  CAS  Google Scholar 

  • Alizadeh, K., Nemati, H., Zohrevand, S., Hashemi, P., Kakanejadifard, A., Shamsipur, M., et al. (2013). Selective dispersive liquid-liquid microextraction and preconcentration of Ni(II) into a micro droplet followed by ETAAS determination using a yellow Schiffs base bisazanyl derivative. Materials Science & Engineering C-Materials for Biological Applications, 33(2), 916–922.

    Article  CAS  Google Scholar 

  • Amirkavei, M., Dadfarnia, S., & Shabani, A. M. H. (2013). Dispersive liquid-liquid microextraction based on solidification of floating organic drop for simultaneous separation/preconcentration of nickel, cobalt and copper prior to determination by electrothermal atomic absorption spectrometry. Quimica Nova, 36(1), 63–68.

    Article  CAS  Google Scholar 

  • Asadollahzadeh, M., Niksirat, N., Tavakoli, H., Hemmati, A., Rahdari, P., Mohammadi, M., et al. (2014). Application of multi-factorial experimental design to successfully model and optimize inorganic arsenic speciation in environmental water samples by ultrasound assisted emulsification of solidified floating organic drop microextraction. Analytical Methods, 6(9), 2973–2981.

    Article  CAS  Google Scholar 

  • Asghari, A., Fazl-Karimi, H., Barfi, B., Rajabi, M., & Daneshfar, A. (2014). Application of ultrasound-assisted emulsification microextraction for simultaneous determination of aminophenol isomers in human urine, hair dye, and water samples using high-performance liquid chromatography. Human & Experimental Toxicology, 33(8), 863–872.

    Article  CAS  Google Scholar 

  • Baliza, P. X., Teixeira, L. S. G., & Lemos, V. A. (2009). A procedure for determination of cobalt in water samples after dispersive liquid-liquid microextraction. Microchemical Journal, 93(2), 220–224.

    Article  CAS  Google Scholar 

  • Baroumand, N., Akbari, A., Shirani, M., & Shokri, Z. (2015). Homogeneous liquid-liquid microextraction via flotation assistance with thiol group chelating reagents for rapid and efficient determination of cadmium(II) and copper(II) ions in water samples. Water, Air, and Soil Pollution, 226(1), 1–8.

    Article  Google Scholar 

  • Bulut, V. N., Gundogdu, A., Duran, C., Senturk, H. B., Soylak, M., Elci, L., et al. (2007). A multi-element solid-phase extraction method for trace metals determination in environmental samples on Amberlite XAD-2000. Journal of Hazardous Materials, 146(1–2), 155–163.

    Article  CAS  Google Scholar 

  • Cabaleiro, N., de la Calle, I., Bendicho, C., & Lavilla, I. (2013). Current trends in liquid-liquid and solid-liquid extraction for cosmetic analysis: a review. Analytical Methods, 5(2), 323–340.

    Article  CAS  Google Scholar 

  • Camel, V. (2003). Solid phase extraction of trace elements. Spectrochimica Acta Part B-Atomic Spectroscopy, 58(7), 1177–1233.

    Article  Google Scholar 

  • Citak, D., & Tuzen, M. (2010). A novel preconcentration procedure using cloud point extraction for determination of lead, cobalt and copper in water and food samples using flame atomic absorption spectrometry. Food and Chemical Toxicology, 48(5), 1399–1404.

    Article  CAS  Google Scholar 

  • Deng, Q. W., Chen, M. H., Kong, L. M., Zhao, X., Guo, J., & Wen, X. D. (2013). Novel coupling of surfactant assisted emulsification dispersive liquid-liquid microextraction with spectrophotometric determination for ultra trace nickel. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 104, 64–69.

    Article  CAS  Google Scholar 

  • Eaton, D. L., & Klaassen, C. D. (2001). Principles of toxicology. McGraw-Hill Companies.

  • Ebrahimi, B., Bahar, S., & Moedi, S. E. (2013). Cold-induced aggregation microextraction technique based on ionic liquid for preconcentration and determination of nickel in food samples. Journal of the Brazilian Chemical Society, 24(11), 1832–1839.

    Google Scholar 

  • Elci, L., Soylak, M., & Dogan, M. (1992). Preconcentration of trace-metals in river waters by the application of chelate adsorption on Amberlite XAD-4. Fresenius Journal of Analytical Chemistry, 342(1–2), 175–178.

    Article  CAS  Google Scholar 

  • Fang, Z. L., Dong, L. P., & Xu, S. K. (1992). Critical evaluation of the efficiency and synergistic effects of flow-injection techniques for sensitivity enhancement in flame atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry, 7(2), 293–299.

    Article  CAS  Google Scholar 

  • Karadas, C. (2014). A new dispersive liquid-liquid microextraction method for preconcentration of copper from waters and cereal flours and determination by flame atomic absorption spectrometry. Water, Air, and Soil Pollution, 225(11), 1–8.

    Google Scholar 

  • Khan, S., Soylak, M., & Kazi, T. G. (2013). Room temperature ionic liquid-based dispersive liquid phase microextraction for the separation/preconcentration of trace Cd2+ as 1-(2-pyridylazo)-2-naphthol (PAN) complex from environmental and biological samples and determined by FAAS. Biological Trace Element Research, 156(1–3), 49–55.

    Article  CAS  Google Scholar 

  • Khanam, R., Singh, R., Mehta, A., Dashora, R., Chauhan, R. S., & Goswami, A. K. (2005). Review of spectrophotometric methods for determination of nickel. Reviews in Analytical Chemistry, 24(3), 149–245.

    CAS  Google Scholar 

  • Khani, R., & Shemirani, F. (2013). Simultaneous determination of trace amounts of cobalt and nickel in water and food samples using a combination of partial least squares method and dispersive liquid-liquid microextraction based on ionic liquid. Food Analytical Methods, 6(2), 386–394.

    Article  Google Scholar 

  • Lemos, V. A., & Vieira, U. S. (2013). Single-drop microextraction for the determination of manganese in seafood and water samples. Microchimica Acta, 180(5–6), 501–507.

    Article  CAS  Google Scholar 

  • Lemos, V. A., Bezerra, M. A., & Amorim, F. A. C. (2008). On-line preconcentration using a resin functionalized with 3,4-dihydroxybenzoic acid for the determination of trace elements in biological samples by thermospray flame furnace atomic absorption spectrometry. Journal of Hazardous Materials, 157(2–3), 613–619.

    Article  CAS  Google Scholar 

  • Mohammadi, S. Z., Afzali, D., & Baghelani, Y. M. (2010). Flame atomic absorption spectrometry determination of trace amounts of nickel ions in water samples after ligandless ultrasound-assisted emulsification microextraction. Analytical Sciences, 26(9), 973–977.

    Article  CAS  Google Scholar 

  • Naeemullah, T. M., Kazi, T. G., Citak, D., & Soylak, M. (2013). Pressure-assisted ionic liquid dispersive microextraction of vanadium coupled with electrothermal atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry, 28(9), 1441–1445.

    Article  CAS  Google Scholar 

  • Pena-Pereira, F., Lavilla, I., & Bendicho, C. (2009). Miniaturized preconcentration methods based on liquid-liquid extraction and their application in inorganic ultratrace analysis and speciation: a review. Spectrochimica Acta Part B-Atomic Spectroscopy, 64(1), 1–15.

    Article  Google Scholar 

  • Perrin, D. D., & Dempsey, B. (1974). Buffers for pH and metal ion control. London: Chapman and Hall.

    Google Scholar 

  • Rajabi, M., Asemipour, S., Barfi, B., Jamali, M. R., & Behzad, M. (2014). Ultrasound-assisted ionic liquid based dispersive liquid-liquid microextraction and flame atomic absorption spectrometry of cobalt, copper, and zinc in environmental water samples. Journal of Molecular Liquids, 194, 166–171.

    Article  CAS  Google Scholar 

  • Sereshti, H., Kermani, M., Karimi, M., & Samadi, S. (2014). Optimized ultrasound-assisted emulsification-microextraction followed by ICP-OES for simultaneous determination of ytterbium and holmium in natural water. Clean-Soil Air Water, 42(8), 1089–1097.

    Article  CAS  Google Scholar 

  • Wang, X. J., Chen, J. J., Zhou, Y., & Wang, L. J. (2014). Optimized ultrasound-assisted dispersive liquid-liquid microextraction for simultaneous trace multielement determination of heavy metals in environmental water samples by ICP-MS. Toxicology Letters, 229, S132–S132.

    Article  Google Scholar 

  • Zeeb, M., Mirza, B., Zare-Dorabei, R., & Farahani, H. (2014). Ionic liquid-based ultrasound-assisted in situ solvent formation microextraction combined with electrothermal atomic absorption spectrometry as a practical method for preconcentration and trace determination of vanadium in water and food samples. Food Analytical Methods, 7(9), 1783–1790.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and the Fundação de Amparo à Pesquisa do Estado da Bahia (FAPESB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valfredo Azevedo Lemos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lemos, V.A., Jesus Ferreira, V., Barreto, J.A. et al. Development of a Method Using Ultrasound-Assisted Emulsification Microextraction for the Determination of Nickel in Water Samples. Water Air Soil Pollut 226, 141 (2015). https://doi.org/10.1007/s11270-015-2392-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2392-8

Keywords

Navigation