Skip to main content
Log in

Dissipation and Degradation Dynamics of Thifluzamide in Rice Field

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Thifluzamide fungicide is widely used to protect rice (Oryza sativa) against the sheath blight fungus (Rhizoctonia solani). The continuous application of thifluzamide may lead to accumulation in soil and contaminate rice crop. To sustain the environment, it is necessary to assess its accumulation and degradation in field. The method limit of detection (LOD) was 0.022 ng. The limits of quantitation detection (LOQ) were 5.0 μg L−1 in water and 4.0 μg kg−1 in paddy soil and rice crop. In this study, a 2-year (2011–2012) field study was performed to monitor thifluzamide degradation in the rice production areas of Nanjing, Xiaoxian, and Changsha. The degradation dynamics of thifluzamide in paddy water, paddy soil, and rice crop were well described by the first-order kinetics equation. The 2-year average half-lives of thifluzamide in paddy water, paddy soil, and rice crop were 26.19, 17.92, 14.61 days (Nanjing), 15.63, 20.71, 9.10 days (Xiaoxian), and 9.47, 13.92, 10.08 days (Changsha), respectively. Thifluzamide degraded more rapidly in rice crop than in soil and paddy water. The variation in thifluzamide degradation was attributed to the difference in rainfall during the period of rice cultivation. The maximum residue of thifluzamide in brown rice was 0.0303 mg kg−1 in Nanjing and the residue of thifluzamide in brown rice was not detected in other two sites before thifluzamide was applied at pre-harvest. The experimental data demonstrated that thifluzamide recommended dosage of 72 g a.i.ha−1 can be used in rice fields with less than three times within a 30-day time interval.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bai, Y. H., Zhou, L., & Wang, J. (2006). Organophosphorus pesticide residues in market foods in Shaanxi area, China. Food Chemistry, 98, 240–242.

    Article  CAS  Google Scholar 

  • Battu, R. S., Singh, B., Kang, B. K., & Joia, B. S. (2005). Risk assessment through dietary intake of total diet contaminated with pesticide residues in Punjab, India, 1999–2002. Ecotoxicology and Environmental Safety, 62, 132–139.

    Article  CAS  Google Scholar 

  • Bi, Y. F., Miao, S. S., Lu, Y. C., Qiu, C. B., Zhou, Y., & Yang, H. (2012). Phytotoxicity, bioaccumulation and degradation of isoproturon in green algae. Journal of Hazardous Materials, 243, 242–249.

    Article  CAS  Google Scholar 

  • Cao, Y. S., Chen, J. X., Wang, Y. L., Liang, J., Chen, L. H., & Lu, Y. T. (2005). HPLC/UV analysis of chlorfenapyr residues in cabbage and soil to study the dynamics of different formulations. Science of the Total Environment, 350, 38–46.

    Article  CAS  Google Scholar 

  • Cao, P. Y., Liu, F. M., Wang, S. L., Wang, Y. H., & Han, L. J. (2008). GC–ECD analysis of S-metolachlor (Dual Gold) in cotton plant and soil in trial field. Environmental Monitoring and Assessment, 143, 1–7.

    Article  CAS  Google Scholar 

  • Chen, G., Lin, C., Chen, L., & Yang, H. (2011). Effect of polar-dissolved organic matter fractions on the mobility of prometryne in soil. Journal of Soils and Sediments, 11(3), 395–405.

    Article  CAS  Google Scholar 

  • Cui, L. E., & Yang, H. (2011). Accumulation and residue of napropamide in alfalfa (Medicago sativa) and soil involved in toxic response. Journal of Hazardous Materials, 190, 81–86.

    Article  CAS  Google Scholar 

  • de Melo Plese, L. P., Paraiba, L. C., Foloni, L. L., & Pimentel Trevizan, L. R. (2005). Kinetics of carbosulfan hydrolysis to carbofuran and the subsequent degradation of this last compound in irrigated rice fields. Chemosphere, 60, 149–156.

    Article  Google Scholar 

  • Ding, Q., Wu, H. L., Xu, Y., Guo, L. J., Liu, K., Gao, H. M., & Yang, H. (2011). Impact of low molecular weight organic acids and dissolved organic matter on sorption and mobility of isoproturon in two soils. Journal of Hazardous Materials, 190, 823–832.

    Article  CAS  Google Scholar 

  • Ditya, P., Das, S. P., Sarkar, P. K., & Bhattacharyya, A. (2010). Degradation dynamics of chlorfenapyr residue in chili, cabbage and soil. Bulletin of Environmental Contamination and Toxicology, 84, 602–605.

    Article  CAS  Google Scholar 

  • Gao, Y. F., Yang, H., Zhan, X. H., & Zhou, L. X. (2013). Scavenging of BHCs and DDTs from soil by thermal desorption and solvent washing. Environmental Science and Pollution Research, 20, 1482–1492.

    Article  CAS  Google Scholar 

  • Gerhardt, K. E., Huang, X. D., Glick, B. R., & Greenberg, B. M. (2009). Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Science, 176, 20–30.

    Article  CAS  Google Scholar 

  • Hirooka, T., & Ishii, H. (2013). Chemical control of plant diseases. Journal of General Plant Pathology. doi:10.1007/s10327-013-0470-6.

    Google Scholar 

  • Hoferkamp, L., Hermanson, M. H., & Muir, D. C. G. (2010). Current use pesticides in Arctic media; 2000–2007. Science of the Total Environment, 408, 2985–2994.

    Article  CAS  Google Scholar 

  • Jiang, L., Ma, L., Sui, Y., Han, S. Q., & Yang, H. (2011). Mobilization and plant accumulation of prometryne in soil by two different sources of organic matter. Journal of Environmental Monitoring, 13(7), 1935–1943.

    Article  CAS  Google Scholar 

  • Jin, Z. P., Luo, K., Zhang, S., Zheng, Q., & Yang, H. (2012). Bioaccumulation and catabolism of prometryne in green algae. Chemosphere, 87, 278–284.

    Article  CAS  Google Scholar 

  • Kaushik, G., Satya, S., & Naik, S. N. (2009). Food processing a tool to pesticide residue dissipation—a review. Food Research International, 42, 26–40.

    Article  CAS  Google Scholar 

  • Khay, S., Choi, J. H., Abd El-Aty, A. M., Mamun, M. I. R., Park, B. J., Goudah, A., Shin, H. C., & Shim, J. H. (2008). Dissipation behavior of lufenuron, benzoylphenylurea insecticide, in/on Chinese cabbage applied by foliar spraying under greenhouse conditions. Bulletin of Environmental Contamination and Toxicology, 81, 369–372.

    Article  CAS  Google Scholar 

  • Kyriakidis, N. V., Pappas, C., & Athanasopoulos, P. (2005). Degradation of fenthion and fenthion sulfoxide on grapes on the vines and during refrigerated storage. Food Chemistry, 91, 241–245.

    Article  CAS  Google Scholar 

  • Li, Y. Y., & Yang, H. (2013). Bioaccumulation and degradation of pentachloronitrobenzene in Medicago sativa. Journal of Environmental Management, 119, 143–150.

    Article  CAS  Google Scholar 

  • Li, C., Yang, T., Huangfu, W. G., & Wu, Y. L. (2011). Residues and dynamics of pymetrozine in rice field ecosystem. Chemosphere, 82, 901–904.

    Article  CAS  Google Scholar 

  • Mahmood, Q., Bilal, M., & Jan S. (2014). Chapter 17-herbicide, pesticides, and plant tolerance: an overview. Emerging Technologies and Management of Crop Stress Tolerance. Academic press, 423–448.

  • Malhat, F. M. (2012). Determination of chlorantraniliprole residues in grape by high-performance liquid chromatography. Food Analytical Methods, 5, 1492–1496.

    Article  Google Scholar 

  • Nguyen, T. D., Han, E. M., Seo, M. S., Kim, S. R., Yun, M. Y., Lee, D. M., & Lee, G. H. (2008). A multi-residue method for the determination of 203 pesticides in rice paddies using gas chromatography/mass spectrometry. Analytica Chimica Acta, 619, 67–74.

    Article  CAS  Google Scholar 

  • Paramasivam, M., & Banerjee, H. (2012). Degradation dynamics of flubendiamide in different types of soils. Bulletin of Environmental Contamination and Toxicology, 88, 511–514.

    Article  CAS  Google Scholar 

  • Pareja, L., Fernández-Alba, A. R., Cesio, V., & Heinzen, H. (2011). Analytical methods for pesticide residues in rice. Trends in Analytical Chemistry, 30, 270–291.

    Article  CAS  Google Scholar 

  • Rejeb, S. B., Cléroux, C., Lawrence, J. F., Geay, P. Y., Wu, S., & Stavinski, S. (2001). Development and characterization of immunoaffinity columns for the selective extraction of a new developmental pesticide: thifluzamide, from peanuts. Analytica Chimica Acta, 432, 193–200.

    Article  CAS  Google Scholar 

  • Sánchez, M. E., Estrada, I. B., Martínez, O., Martín-Villacorta, J., Aller, A., & Morán, A. (2004). Influence of the application of sewage sludge on the degradation of pesticides in the soil. Chemosphere, 57, 673–679.

    Article  Google Scholar 

  • Sastre-Conde, I., Cabezas, J. G., Guerrero, A., Vicente, M. Á., & del Carmen Lobo, M. (2007). Evaluation of the soil biological activity in a remediation soil assay using organic amendments and vegetal cover. Science of the Total Environment, 378, 205–208.

    Article  CAS  Google Scholar 

  • Singh, N., & Tandon, S. (2014). Dissipation kinetics and leaching of cyazofamid fungicide in texturally different agricultural soils. International Journal of Environmental Science and Technology. doi:10.1007/s13762-014-0608-x.

    Google Scholar 

  • Sun, Y. B., Xu, Y. M., Sun, Y., Qin, X., & Wang, Q. (2013). Dissipation and dynamics of mesotrione in maize and soil under field ecosystem. Bulletin of Environmental Contamination and Toxicology, 90, 242–247.

    Article  CAS  Google Scholar 

  • Tandon, S. (2008). Persistnce of pendimethalin in soil and potato tuber. Potato Journal, 35(1–2), 93–95.

    Google Scholar 

  • Tandon, S. (2012). Residue analysis of isoproturon and butachlor in long term trial of rice-wheat system. Pestology, 36(1), 27–29.

    CAS  Google Scholar 

  • Tandon, S., & Sand, N. K. (2009). Harvest time residue of Melody Duo (iprovalicarb + propineb) in soil and potato tubers. Pestology, 33(2), 40–45.

    CAS  Google Scholar 

  • Tandon, S., & Singh, A. (2015). Field dissipation kinetics of atrazine in soil and post harvest residues in winter maize crop under subtropical conditions. Chemistry and Ecology. doi:10.1080/02757540.2014.950567.

    Google Scholar 

  • Tandon, S., Chaturvedi, K., & Sand, N. K. (2010). Residue analysis of pyroquilon in soil, paddy straw and grain at harvest. Pesticide Research Journal, 22(1), 77–79.

    CAS  Google Scholar 

  • Tao, L., & Yang, H. (2011). Fluroxypyr biodegradation in soils by multiple factors. Environmental Monitoring and Assessment, 175(1–4), 227–238.

    Article  CAS  Google Scholar 

  • Tewary, D. K., Kumar, V., Ravindranath, S. D., & Shanker, A. (2005). Dissipation behavior of bifenthrin residues in tea and its brew. Food Control, 16, 231–237.

    Article  CAS  Google Scholar 

  • Wang, K., Wu, J. X., & Zhang, H. Y. (2012). Dissipation of difenoconazole in rice, paddy soil, and paddy water under field conditions. Ecotoxicology and Environmental Safety, 86, 111–115.

    Article  CAS  Google Scholar 

  • Wang, H. Z., Zuo, H. G., Ding, Y. J., Jiang, C., Miao, S. S., & Yang, H. (2013). Biotic and abiotic degradation of pesticide dufulin in soils. Environmental Science and Pollution Research. doi:10.1007/s11356-013-2380-8.

    Google Scholar 

  • Wei, L. N., Zhang, J. J., Wang, F. R., Zhang, J. J., Tan, L. R., & Yang, H. (2013). Study on determination of thifluzamide residues in rice. Journal of Pesticide Science (in Chinese), 15(3), 311–315.

    CAS  Google Scholar 

  • Xu, X. L., Li, L., Zhong, W. K., & He, Y. J. (2009). Multi-residue analysis of 205 crop pesticides using mini-solid phase extraction-large volume injection-GC-MS. Chromatographia, 70, 173–183.

    Article  CAS  Google Scholar 

  • Yi, X. H., & Lu, Y. T. (2006). Residues and dynamics of probenazole in rice field ecosystem. Chemosphere, 65, 639–643.

    Article  CAS  Google Scholar 

  • Ying, G. G., & Williams, B. (2000). Dissipation of herbicides in soil and grapes in a South Australian vineyard. Agriculture, Ecosystems & Environment, 78, 283–289.

    Article  CAS  Google Scholar 

  • Zhang, X., Shen, Y., Yu, X. Y., & Liu, X. J. (2012). Dissipation of chlorpyrifos and residue analysis in rice, soil and water under paddy field conditions. Ecotoxicology and Environmental Safety, 78, 276–280.

    Article  CAS  Google Scholar 

  • Zhang, C., Wu, Y. J., Jin, S. F., & Yang, H. (2013). Analysis of chlorpyrifos and chlorpyrifos-methyl residues in multi-environmental media by cloud-point extraction and HPLC. Analytical Methods, 5, 3089–3095.

    Article  CAS  Google Scholar 

  • Zhao, P. Y., Wang, L., Chen, L., & Pan, C. P. (2011). Residue dynamics of clopyralid and picloram in rape plant rapeseed and field soil. Bulletin of Environmental Contamination and Toxicology, 86, 78–82.

    Article  CAS  Google Scholar 

  • Zhou, P., Lu, Y. T., Liu, B. F., & Gan, J. J. (2004). Dynamics of fipronil residue in vegetable-field ecosystem. Chemosphere, 57, 1691–1696.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Yang.

Additional information

Li Na Wei and Ping Wu contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 31 kb)

ESM 2

(DOC 37 kb)

ESM 3

(DOC 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, L.N., Wu, P., Wang, F.R. et al. Dissipation and Degradation Dynamics of Thifluzamide in Rice Field. Water Air Soil Pollut 226, 130 (2015). https://doi.org/10.1007/s11270-015-2387-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2387-5

Keywords

Navigation