Advertisement

Removal of U(VI) from Aquatic Systems, Using Winery By-Products as Biosorbents: Equilibrium, Kinetic, and Speciation Studies

  • Vasileios A. AnagnostopoulosEmail author
  • Petros G. Koutsoukos
  • Basil D. Symeopoulos
Article

Abstract

Grape stalks, a low-cost agro-industrial by-product, were used for the first time as a biosorbent for the removal of uranium from aquatic systems. Basic operating conditions (effect of pH, biosorbent dose, uranium initial concentration, and kinetics) were investigated, and the sorption mechanism was explored. The proposed biosorbent’s efficiency to sequester uranium from different profile aquatic systems was assessed, as well as the potential uranium recovery. Biosoprtion performance increased progressively from pH 1.5 to 4.5, and uranium uptake was a rapid process, where film diffusion was the determining step. Maximum uptake ranged from 90 to 115 mg U(VI) g−1 at 15–33 °C, respectively. None of the commonly used adsorption models (Langmuir, Freundlich, Dubinin-Radushkevich) was able to describe the experimental isotherms, whereas the linear model seems to provide the best fit. Kinetic and thermodynamic data implied that both physical and chemical sorption are involved in the process. Species calculation experiments showed that only positively charged and uncharged uranium species can be retained on the biomass. Quantitative uranium recovery was achieved by mild desorbing agents at concentrations as low as 0.1 M. Therefore, grape stalks seem to be a promising biosorbent due to their high sequestration capacity even under high salinity and acidity conditions, low cost, and easy regeneration.

Keywords

Biosorption Grape stalks Uranium Kinetics Equilibrium Species calculation 

Notes

Acknowledgments

This research has been co-financed by the European Union (European Regional Development Fund (ERDF)) and Greek national funds through the Operational Program “Regional Operational Programme” of the National Strategic Reference Framework (NSRF)—Research Funding Program: Support for research, technology and innovation actions in Region of Western Greece.

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

11270_2015_2379_MOESM1_ESM.pdf (228 kb)
ESM 1 (PDF 227 kb)
11270_2015_2379_MOESM2_ESM.pdf (90 kb)
ESM 2 (PDF 89 kb)
11270_2015_2379_MOESM3_ESM.pdf (142 kb)
ESM 3 (PDF 142 kb)

References

  1. Ahmad, W. A., Jaapar, J., & Zahari, M. A. K. M. (2004). Removal of heavy metals from wastewater. In A. Pandey (Ed.), Concise encyclopedia of bioresource technology (pp. 152–157). NY: The Haworth Press Inc.Google Scholar
  2. Al-Degs, Y. S., El-Barghouthi, M. I., Issa, A. A., Khraisheh, M. A., & Walker, G. M. (2006). Sorption of Zn(II), Pb(II), and Co(II) using natural sorbents: equilibrium and kinetic studies. Water Research, 40, 2645–2658.CrossRefGoogle Scholar
  3. Aldor, I., Fourest, E., & Volesky, B. (1995). Desorption of cadmium from algal biosorbent. Canadian Journal of Chemical Engineering, 73, 516–522.CrossRefGoogle Scholar
  4. Anagnostopoulos, V., Bekatorou, A., & Symeopoulos, B. (2011). Contribution to interpretation of metal uptake dependence upon the growth phase of microorganisms. The case of uranium (VI) uptake by common yeasts, cultivated at different temperatures, with or without aeration. Journal of Radioanalytical and Nuclear Chemistry, 287, 665–671.CrossRefGoogle Scholar
  5. Anayurt, R. A., Sari, A., & Tuzen, M. (2009). Equilibrium, thermodynamic and kinetic studies on biosorption of Pb(II) and Cd(II) from aqueous solution by macrofungus (Lactarius scrobiculatus) biomass. Chemical Engineering Journal, 151, 255–261.CrossRefGoogle Scholar
  6. Belgacem, A., Rebiai, R., Hadoun, H., Khemaissia, S., & Belmedani, M. (2014). The removal of uranium (VI) from aqueous solutions onto activated carbon developed from grinded used tire. Environmental Science and Pollution Research, 21, 684–694.CrossRefGoogle Scholar
  7. Bogolepov, A. A., Kobets, S. A., & Pshinko, G. N. (2009). Desorption of U(VI) from montmorillonite with aluminum and iron hydroxides deposited on its surface. Radiochemistry, 51, 301–307.CrossRefGoogle Scholar
  8. Bourikas, K., Kordulis, C., & Lycourghiotis, A. (2006). How metal (hydr)oxides are protonated in aqueous media: the (n + 1) rule and the role of the interfacial potential. Journal of Colloid and Interface Science, 296, 389–395.CrossRefGoogle Scholar
  9. Boyd, G. E., Adamson, A. W., & Myers, L. S., Jr. (1947). The exchange adsorption of ions from aqueous solutions by organic zeolites II. Kinetics. Journal of the American Chemical Society, 69, 2836–2848.CrossRefGoogle Scholar
  10. Cantrell, K.J., Serne, R.J., Last, G. V., (2002). Applicability of the linear sorption isotherm model to represent contaminant transport processes in site-wide performance assessments. PNNL-14576, U.S. Springfield, VA: Department of Energy.Google Scholar
  11. Cecal, A., Humelnicu, D., Rudic, V., Cepoi, L., Ganju, D., & Cojocari, A. (2012). Uptake of uranyl ions from uranium ores and sludges by means of Spirulina platensis, Porphyridium cruentum and Nostok linckia alga. Bioresource Technology, 118, 19–23.CrossRefGoogle Scholar
  12. Cheung, W. H., Szeto, Y. S., & McKay, G. (2007). Intraparticle diffusion processes during acid dye adsorption onto chitosan. Bioresource Technology, 98, 2897–2904.CrossRefGoogle Scholar
  13. Deze, E. G., Papageorgiou, S. K., Favvas, E. P., & Katsaros, F. K. (2012). Porous alginate aerogel beads for effective and rapid heavy metal sorption from aqueous solutions: effect of porosity in Cu2+ and Cd2+ ion sorption. Chemical Engineering Journal, 209, 537–546.CrossRefGoogle Scholar
  14. Dupont, L., & Guillon, E. (2003). Removal of hexavalent chromium with a lignocellulosic substrate extracted from wheat bran. Environmental Science & Technology, 37, 4235–4241.CrossRefGoogle Scholar
  15. Ferraz, A. I., Tavares, T., & Teixeira, J. A. (2004). Cr(III) removal and recovery from Saccharomyces cerevisiae. Chemical Engineering Journal, 105, 11–20.CrossRefGoogle Scholar
  16. Fiol, N., Escudero, C., & Villaescusa, I. (2008). Chromium sorption and Cr(VI) reduction to Cr(III) by grape stalks and yohimbe bark. Bioresource Technology, 99, 5030–5036.CrossRefGoogle Scholar
  17. Foo, K. Y., & Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156, 2–10.CrossRefGoogle Scholar
  18. Ho, Y. S., & McKay, G. (2000). The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Research, 34, 735–742.CrossRefGoogle Scholar
  19. Hritcu, D., Humelnicu, D., Dodi, G., & Popa, M. I. (2012). Magnetic chitosan composite particles: evaluation of thorium and uranyl ion adsorption from aqueous solutions. Carbohydrate Polymers, 87, 1185–1191.CrossRefGoogle Scholar
  20. Jakob, A. (1997). Modelling solute transport using the double porous medium approach. In I. Grenthe & I. Puigdomenech (Eds.), Modelling in aquatic chemistry. Paris: OECD.Google Scholar
  21. Khani, M. (2011). Uranium biosorption by Padina sp. algae biomass: kinetics and thermodynamics. Environmental Science and Pollution Research, 18, 1593–1605.CrossRefGoogle Scholar
  22. Khani, M. H., Pahlavanzadeh, H., & Alizadeh, K. (2012). Biosorption of strontium from aqueous solution by fungus Aspergillus terreus. Environmental Science and Pollution Research, 19, 2408–2418.CrossRefGoogle Scholar
  23. Konstantinou, M., & Pashalidis, I. (2007). Adsorption of hexavalent uranium on biomass by-product. Journal of Radioanalytical and Nuclear Chemistry, 273, 549–552.CrossRefGoogle Scholar
  24. Kumar, D., & Gaur, J. P. (2011). Chemical reaction- and particle diffusion-based kinetic modeling of metal biosorption by a Phormidium sp.-dominated cyanobacterial mat. Bioresource Technology, 102, 633–640.CrossRefGoogle Scholar
  25. Kuyucak, N., & Volesky, B. (1989). Desorption of cobalt- laden algal biosorbent. Biotechnology and Bioengineering, 33, 815–822.CrossRefGoogle Scholar
  26. Landa, E. (2003). Mobilization of radionuclides from uranium mill tailings and related waste materials in anaerobic environments. Journal of Radioanalytical and Nuclear Chemistry, 255, 559–563.CrossRefGoogle Scholar
  27. Laus, R., Geremias, R., Vasconcelos, H. L., Laranjeira, M. C., & Favere, V. T. (2007). Reduction of acidity and removal of metal ions from coal mining effluents using chitosan microspheres. Journal of Hazardous Materials, 149, 471–474.CrossRefGoogle Scholar
  28. Liu, Y., & Xu, H. (2007). Equilibrium, thermodynamics and mechanisms of Ni2+ biosorption by aerobic granules. Biochemical Engineering Journal, 35, 174–182.CrossRefGoogle Scholar
  29. Martínez, M., Miralles, N., Hidalgo, S., Fiol, N., Villaescusa, I., & Poch, J. (2006). Removal of lead(II) and cadmium(II) from aqueous solutions using grape stalk waste. Journal of Hazardous Materials, 133, 203–211.CrossRefGoogle Scholar
  30. Moghaddam, M. R., Fatemi, S., & Keshtkar, A. (2013). Adsorption of lead (Pb2+) and uranium cations by brown algae; experimental and thermodynamic modeling. Chemical Engineering Journal, 231, 294–303.CrossRefGoogle Scholar
  31. Müller, K., Foerstendorf, H., Tsushima, S., Brendler, V., Bernhard, G., & Jaapar, J. (2009). Direct spectroscopic characterization of aqueous actinyl(VI) species: a comparative study of Np and U. The Journal of Physical Chemistry. A, 113, 6626–6632.CrossRefGoogle Scholar
  32. Naja, G., Mustin, C., Volesky, B., & Berthelin, J. (2005). A high resolution titrator: a new approach to studying binding sites of microbial biosorbents. Water Research, 39, 579–586.CrossRefGoogle Scholar
  33. Naja, G., Murphy, V., Volesky, B. (2009). Biosorption, metals. In: M. C. Flickinger (Hrsg.), Encyclopedia of Industrial Biotechnology Bioprocess, Bioseparation, and Cell Technology (pp. 4500). Wiley.Google Scholar
  34. Özcan, A. S., & Özcan, A. (2004). Adsorption of acid dyes from aqueous solutions onto acid-activated bentonite. Journal of Colloid and Interface Science, 276, 39–46.CrossRefGoogle Scholar
  35. Pang, C., Liu, Y.-H., Cao, X.-H., Li, M., Huang, G.-L., Hua, R., Wang, C.-X., Liu, Y.-T., & An, X.-F. (2011). Biosorption of uranium(VI) from aqueous solution by dead fungal biomass of Penicillium citrinum. Chemical Engineering Journal, 170, 1–6.CrossRefGoogle Scholar
  36. Prodromou, M., & Pashalidis, I. (2013). Uranium adsorption by non-treated and chemically modified cactus fibres in aqueous solutions. Journal of Radioanalytical and Nuclear Chemistry, 298, 1587–1595.CrossRefGoogle Scholar
  37. Saǧ, Y., & Kutsal, T. (2000). Determination of the biosorption heats of heavy metal ions on Zoogloea ramigera and Rhizopus arrhizus. Biochemical Engineering Journal, 6, 145–151.CrossRefGoogle Scholar
  38. Sar, P., Kazy, S. K., Asthana, R. K., & Singh, S. P. (1999). Metal adsorption and desorption by lyophilized Pseudomonas aeruginosa. International Biodeterioration & Biodegradation, 44, 101–110.CrossRefGoogle Scholar
  39. Sarri, S., Misaelides, P., Papanikolaou, M., & Zamboulis, D. (2009). Uranium removal from acidic aqueous solutions by Saccharomyces cerevisiae, Debaryomyces hansenii, Kluyveromyces marxianus and Candida colliculosa. Journal of Radioanalytical and Nuclear Chemistry, 279, 709–711.CrossRefGoogle Scholar
  40. Sciban, M., Klasnja, M., & Skrbic, B. (2006). Modified softwood sawdust as adsorbent of heavy metal ions from water. Journal of Hazardous Materials, 136, 266–271.CrossRefGoogle Scholar
  41. Sciban, M., Radetic, B., Kevresan, Z., & Klasnja, M. (2007). Adsorption of heavy metals from electroplating wastewater by wood sawdust. Bioresource Technology, 98, 402–409.CrossRefGoogle Scholar
  42. Sprynskyy, M., Kowalkowski, T., Tutu, H., Cukrowska, E. M., & Buszewski, B. (2011). Adsorption performance of talc for uranium removal from aqueous solution. Chemical Engineering Journal, 171, 1185–1193.CrossRefGoogle Scholar
  43. Tsezos, M. (1989). Recovery of uranium from biological adsorbents. Desorption equilibrium. Biotechnology and Bioengineering, 26, 973–981.CrossRefGoogle Scholar
  44. Tsezos, M., Georgousis, Z., & Remoudaki, E. (1997). Mechanism of aluminium interference on uranium biosorption by Rhizopus arrhizus. Biotechnology and Bioengineering, 55, 16–27.CrossRefGoogle Scholar
  45. Ucun, H., Aksakal, O., & Yildiz, E. (2009). Copper(II) and zinc(II) biosorption on Pinus sylvestris L. Journal of Hazardous Materials, 161, 1040–1045.CrossRefGoogle Scholar
  46. Vilar, V. J. P., Botelho, C. M. S., & Boaventura, R. A. R. (2007). Copper desorption from Gelidium algal biomass. Water Research, 41, 1569–1579.CrossRefGoogle Scholar
  47. Villaescusa, I., Fiol, N., Martínez, M., Miralles, N., Poch, J., & Serarols, J. (2004). Removal of copper and nickel ions from aqueous solutions by grape stalks wastes. Water Research, 38, 992–1002.CrossRefGoogle Scholar
  48. Volesky, B. (2003). Sorption and biosorption. Montreal: SV Sorbex Inc.Google Scholar
  49. Voudrias, E., Fytianos, K., & Bozani, E. (2002). Sorption–desorption isotherms of dyes from aqueous solutions and wastewaters with different sorbent materials. Global Nest Journal, 4, 75–83.Google Scholar
  50. Wang, S., & Ariyanto, E. (2007). Competitive adsorption of malachite green and Pb ions on natural zeolite. Journal of Colloid and Interface Science, 314, 25–31.CrossRefGoogle Scholar
  51. Wang, X. A., Xia, L.-S., Zheng, W.-N., & Tan, K.-X. (2010). Adsorption behavior and mechanism of uranium (VI) on modified wheat straw. The Chinese Journal of Process Engineering, 10, 1084–1090.Google Scholar
  52. Weber, W. J., & Morris, J. C. (1963). Kinetics of adsorption on carbon from solution. Journal of the Sanitary Engineering Division: The American Society of Civil Engineers, 89, 31–60.Google Scholar
  53. Zheng, W.-N., Xia, L.-S., Wang, X., & Tan, K.-X. (2011). Adsorption behavior and mechanism of uranium by chaff. Atomic Energy Science and Technology, 45, 534–540.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Vasileios A. Anagnostopoulos
    • 1
    Email author
  • Petros G. Koutsoukos
    • 2
  • Basil D. Symeopoulos
    • 1
  1. 1.Radiochemistry Lab, Department of ChemistryUniversity of PatrasPatrasGreece
  2. 2.Division of Chemical Technology & Applied Physical Chemistry, Department of Chemical EngineeringUniversity of PatrasPatrasGreece

Personalised recommendations