Water, Air, & Soil Pollution

, 226:312

Chemical, Leaching, and Toxicity Characteristics of Coal Ashes from Circulating Fluidized Bed of a Philippine Coal-Fired Power Plant

  • Susan Gallardo
  • Eric D. van Hullebusch
  • Denvert Pangayao
  • Beatice Mari Salido
  • Ria Ronquillo


Characterization of the coal ash from a typical coal-fired circulating fluidized bed (CFB) power plant in the Philippines was done by studying physical and chemical properties as well as toxic elements content from Semirara and Indonesian fly and bottom ashes. Laboratory-scale experiment was carried out using serial batch leaching procedure (SBLP) to determine the leaching behavior of toxic elements from coal ashes and to mimic the environmental condition using sulfuric acid. From the X-ray diffraction (XRD) and X-ray fluorescence (XRF) analyses, the main compound present is CaO which makes the coal ash alkaline in nature. Moreover, SiO2, Fe3O4, and other trace minerals are also present. Also, toxicity characterization leaching procedure (TCLP) shows that more than 99 % of chromium and arsenic remain in the coal ashes matrix. The results of the chemical analysis of eluates deduced by the application of standard leaching tests according to TCLP method indicated that hazardous elements such as heavy metals and metalloids contained in fly and bottom ashes could potentially be transferred to the liquid phase. According to the Microtox analysis, the bottom ashes are less toxic than fly ashes due to the vaporization of toxic elements during the combustion and their subsequent adsorption on the surface of fly ashes. Furthermore, leaching of chromium from the coal ash samples was significantly affected by initial pH of the leachant adjusted with sulfuric acid. The highest leaching rate was reached using the combined condition of pH of 8, contact time of 8 h, and L/S of 5. With these conditions, the leaching rate of chromium from SBA is 0.059, from SFA is 0.070, from IBA is 0.054, and from IFA is 0.06 g Cr/g of ash per hour. Based on literature, the results are relatively comparable.


Coal ash CFB Toxicity test Leaching Chromium 


  1. American Society for Testing Materials ASTM (2005). ASTM standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete (C618-05). In: Annual book of ASTM standards, concrete and aggregates, vol. 04.02.Google Scholar
  2. Ahmaruzzaman, M. (2010). A review on the utilization of fly ash. Progress in Energy and Combustion Science, 36, 327–363. doi:10.1016/j.pecs.2009.11.003.CrossRefGoogle Scholar
  3. Akar, G., Polat, M., Galecki, G., & Ipekoglu, U. (2012). Leaching behavior of selected trace metals in coal fly ash samples from Yenikoy coal-fired power plants. Fuel Processing Technology, 104, 50–56. doi:10.1016/j.fuproc.2012.06.026.CrossRefGoogle Scholar
  4. Bhangare, R. C., Ajmal, P. Y., Sahu, S. K., Pandit, G. G., & Puranik, V. D. (2011). Distribution of trace elements in coal and combustion residues from five thermal power plants in India. International Journal of Coal Geology, 86, 349–356. doi:10.1016/j.coal.2011.03.008.CrossRefGoogle Scholar
  5. Bhattacharyya, S., Donahoe, R., & Patel, D. (2009). Experimental study of chemical treatment of coal fly ash to reduce mobility of priority trace elements. Fuel, 88, 1173–1184. doi:10.1016/j.fuel.2007.11.006.CrossRefGoogle Scholar
  6. Bosecker, K. (1997). Bioleaching: metal solubilization by microorganisms. FEMS Microbiology Reviews, 20, 591–604. doi:10.1016/S0168-6445(97)00036-3.CrossRefGoogle Scholar
  7. Darakas, E., Tsiridis, V., Petala, M., & Kungolos, A. (2013). Hexavalent chromium release from lignite fly ash and related ecotoxic effects. Journal of Environmental Science and Health, Part A, 48, 1390–1398. doi:10.1080/10934529.2013.781886.CrossRefGoogle Scholar
  8. Demir, U., Yamik, A., Kelebek, S., Oteyaka, B., Ucar, A., & Sahbaz, O. (2008). Characterization and column flotation of bottom ashes from Tuncbilek power plant. Fuel, 87, 666–672. doi:10.1016/j.fuel.2007.05.040.CrossRefGoogle Scholar
  9. Dhal, B., Thatoi, H. N., Das, N. N., & Pandey, B. D. (2013). Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review. Journal of Hazardous Materials, 250–251, 272–291. doi:10.1016/j.jhazmat.2013.01.048.CrossRefGoogle Scholar
  10. Dirany, A., Efremova Aaron, S., Oturan, N., Sirés, I., Oturan, M. A., & Aaron, J. (2011). Study of the toxicity of sulfamethoxazole and its degradation products in water by a bioluminescence method during application of the electro-Fenton treatment. Analytical and Bioanalytical Chemistry, 400, 353–360. doi:10.1007/s00216-010-4441-x.CrossRefGoogle Scholar
  11. Dutta, B., Khanra, S., & Mallick, D. (2009). Leaching of elements from coal fly ash: assessment of its potential for use in filling abandoned coal mines. Fuel, 88, 1314–1323. doi:10.1016/j.fuel.2009.01.005.CrossRefGoogle Scholar
  12. Esme, U. (2009). Application of Taguchi Method for the optimization of resistance spot welding process. The Arabian Journal for Science and Engineering, 34, 519–528.Google Scholar
  13. Gottlieb, B., Gilbert, S. G., & Evans, L. G. (2010). Coal ash: a treat to our health and environment. A report from Physicians for Social Responsibility and Earth Justice. http://www.psr.org/assets/pdfs/coal-ash.pdf.
  14. Haddadin, J., Dagot, C., & Fick, M. (1995). Models of bacterial leaching. Enzyme and Microbial Technology, 17, 290–305. doi:10.1016/0141-0229(94)00032-8.CrossRefGoogle Scholar
  15. Hareeparsad, S., Tiruta-Barna, L., Brouckaert, C., & Buckley, C. (2011). Quantitative geochemical modelling using leaching tests: application for coal ashes produced by two South African thermal processes. Journal of Hazardous Materials, 186, 1163–1173. doi:10.1016/j.jhazmat.2010.11.127.CrossRefGoogle Scholar
  16. Hassett, D., Pflughoeft, D., & Heebink, L. (2005). Leaching of CCBs: observations from over 25 years of research. Journal of Fuel, 84, 1378–1383. doi:10.1016/j.fuel.2004.10.016.CrossRefGoogle Scholar
  17. Huggins, F. E., Najih, M., & Huffman, G. P. (1999). Direct speciation of chromium in coal combustion by-products by X-ray absorption fine-structure spectroscopy. Fuel, 78, 233–242. doi:10.1016/S0016-2361(98)00142-2.CrossRefGoogle Scholar
  18. Iyer, R. (2002). The surface chemistry of leaching coal fly ash. Journal of Hazardous Materials, B93, 321–329. doi:10.1016/S0304-3894(02)00049-3.CrossRefGoogle Scholar
  19. Izquierdo, M., & Querol, X. (2012). Leaching behavior of elements from coal combustion fly ash: an overview. International Journal of Coal Geology, 94, 54–66. doi:10.1016/j.coal.2011.10.006.CrossRefGoogle Scholar
  20. Jayaranjan, M. L. D., van Hullebusch, E. D., & Annachhatre, A. P. (2014). Reuse options for coal fired power plant bottom ash and fly ash. Reviews in Environmental Science & Biotechnology, 13, 467–486. doi:10.1007/s11157-014-9336-4.CrossRefGoogle Scholar
  21. Jones, K., Ruppert, L., & Swanson, S. (2012). Leaching of elements from bottom ash, economizer fly ash, and fly ash from two coal-fired power plants. International Journal of Coal Geology, 94, 337–348. doi:10.1016/j.coal.2011.10.007.CrossRefGoogle Scholar
  22. Kim, A., & Hesbach, P. (2009). Comparison of fly ash leaching methods. Journal of Fuel, 88, 926–937. doi:10.1016/j.fuel.2008.11.013.CrossRefGoogle Scholar
  23. Koukouzas, N., Ketikidis, C., & Itskos, G. (2011). Heavy metal characterization of CFB-derived coal fly ash. Fuel Processing Technology, 92, 441–446. doi:10.1016/j.fuproc.2010.10.007.CrossRefGoogle Scholar
  24. Lam, C. H. K., Ip, A. W. M., Barford, J. P., & McKay, G. (2010). Use of Incineration MSW Ash: a review. Journal on Sustainability, 2, 1943–1968. doi:10.3390/su2071943.CrossRefGoogle Scholar
  25. Levandowski, J., & Kalkreuth, W. (2009). Chemical and petrographical characterization of feed coal, fly ash and bottom ash from the Figueira Power Plant, Parana, Brazil. International Journal of Coal Geology, 77, 269–281. doi:10.1016/j.coal.2008.05.005.CrossRefGoogle Scholar
  26. Lokeshappa, B., & Dikshit, A. K. (2012). Behaviour of metals in coal fly ash ponds. APCBEE Procedia, 1, 34–39. doi:10.1016/j.apcbee.2012.03.007.CrossRefGoogle Scholar
  27. Mandich, N. V. (1995). Chemistry of Chromium. AESF 82nd Technical Conference, SURFIN 95 (Baltimore, Md.), June 1995, 1–24.Google Scholar
  28. Meawad, A., Bojinova, D., & Pelovski, Y. (2010). An overview of metals recovery from thermal power plant solid wastes. Waste Management, 30, 2548–2559. doi:10.1016/j.wasman.2010.07.010.CrossRefGoogle Scholar
  29. Narukawa, T., Riley, K., French, D., & Chiba, K. (2007). Speciation of chromium in Australian fly ash. Talanta, 73, 178–184. doi:10.1016/j.talanta.2007.03.003.CrossRefGoogle Scholar
  30. Nelson, P., Shah, P., Strezov, V., Halliburton, B., & Carras, J. (2010). Environmental impacts of coal combustion: a risk approach to assessment of emissions. Fuel, 89, 810–816. doi:10.1016/j.fuel.2009.03.002.CrossRefGoogle Scholar
  31. Neupane, G., & Donahoe, R. (2013). Leachability of elements in alkaline and acidic coal fly ash samples during batch and column leaching tests. Fuel, 104, 758–770. doi:10.1016/j.fuel.2012.06.013.CrossRefGoogle Scholar
  32. Palumbo, A., Tarver, J., Fagan, L., McNeilly, M., Ruther, R., Fisher, L. S., & Amonette, J. (2007). Comparing metal leaching and toxicity from high pH, low pH and high ammonia fly ash. Fuel, 86, 1623–1630. doi:10.1016/j.fuel.2006.11.018.CrossRefGoogle Scholar
  33. Praharaj, T., Powell, M. A., Hart, B. R., & Tripathy, S. (2002). Leachability of elements from sub-bituminous coal ash from India. Environment International, 27, 609–615. doi:10.1016/S0160-4120(01)00118-0.CrossRefGoogle Scholar
  34. Republic Act 6969 (1990). Toxic Substances, Hazardous and Nuclear Waste Control Act of 1990. Manila.Google Scholar
  35. Shah, P., Strezov, V., & Nelson, P. (2012). Speciation of chromium in Australian coals and combustion products. Fuel, 102, 1–8. doi:10.1016/j.fuel.2008.11.019.CrossRefGoogle Scholar
  36. Shupack, S. I. (1991). The chemistry of chromium and some resulting analytical problems. Environmental Health Perspective, 92, 7–11.CrossRefGoogle Scholar
  37. Skodras, G., Grammelis, P., Prokopidou, M., Kakaras, E., & Sakellaropoulos, G. (2009). Chemical, leaching and toxicity characteristics of CFB combustion residues. Fuel, 88, 1201–1209. doi:10.1016/j.fuel.2007.06.009.CrossRefGoogle Scholar
  38. Stam, A. F., Meij, R., Winkel, H. T., Van Eijk, R. J., Huggins, F. E., & Brem, G. (2011). Chromium speciation in coal and biomass co-combustion products. Environmental Science and Technology, 45(6), 2450–2456. doi:10.1021/es103361g.CrossRefGoogle Scholar
  39. Steenari, B. M., Schelander, S., & Lindqvist, O. (1999). Chemical and leaching characteristics of ash from combustion of coal peat and wood in a 12 MW CFB—a comparative study. Fuel, 78, 249–258. doi:10.1016/S0016-2361(98)00137-9.CrossRefGoogle Scholar
  40. Sushil, S., & Batra, V. (2006). Analysis of fly ash heavy metal content and disposal in three thermal power plants in India. Fuel, 85, 2676–2679. doi:10.1016/j.fuel.2006.04.031.CrossRefGoogle Scholar
  41. Tsiridis, V., Petala, M., Samaras, P., Kungolos, A., & Sakellaropoulos, G. P. (2012). Environmental hazard assessment of coal fly ashes using leaching and ecotoxicity tests. Ecotoxicity and Environmental Safety, 84, 212–220. doi:10.1016/j.ecoenv.2012.07.011.CrossRefGoogle Scholar
  42. Ulan, R., & Dean, E. B. (1991). Taguchi approach to design optimization for quality and cost: an overview. Annual Conference of the International Society of Parametric Analyst. Google Scholar
  43. US Environmental Protection Agency (USEPA) SW 864 Method 1311 (1992). Test method for evaluating solid waste, physical/chemical methods—toxicity characterization leaching procedure (TCLP).Google Scholar
  44. Ward, C., French, D., Jankowski, J., Dubikova, M., Li, Z., & Riley, K. (2009). Element mobility from fresh and long-stored acidic fly ashes associated with an Australian power station. International Journal of Coal Geology, 80, 224–236. doi:10.1016/j.coal.2009.09.001.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Susan Gallardo
    • 1
  • Eric D. van Hullebusch
    • 2
  • Denvert Pangayao
    • 1
  • Beatice Mari Salido
    • 1
  • Ria Ronquillo
    • 1
  1. 1.Chemical Engineering DepartmentDe La Salle UniversityManilaPhilippines
  2. 2.Université Paris-Est, Laboratoire Géomatériaux et Environnement (EA 4508)UPEMMarne-la-ValléeFrance

Personalised recommendations