Skip to main content
Log in

Relating Non-equilibrium Solute Transport and Porous Media Physical Characteristics

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Breakthrough data for solute tracer transport at different velocities, covering a wide range of particle sizes and particle shapes corresponding to 324 breakthrough curves, were used in this study. Analysis was carried out for three granular porous media: crushed granite, gravel, and Leca® (a commercial insulation material). Mobile–immobile phase (MIM) solute transport parameters (dispersivity, mass transfer, and mobile (active) porosity) for non-equilibrium mass transport were determined for each breakthrough curve by fitting a MIM solute transport model to the breakthrough data. The resulting set of solute transport parameters was correlated with porous medium physical properties (particle size distribution and particle shape) to establish a set of simple expressions for estimating the MIM solute transport parameters. Linear expressions for predicting the solute dispersivity, mass transfer, and mobile phase porosity from porous medium particle size distribution (mean particle diameter and width of particle size distribution) and particle shape were developed based on regression analysis. A partial validation of these expressions indicated that the developed expressions are able to accurately predict solute transport parameters from porous medium physical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahn, I. S., Lion, L. W., & Shuler, M. L. (1996). Microscale-based modeling of polynuclear aromatic hydrocarbon transport and biodegradation in soil. Biotechnology and Bioengineering, 51(1), 1–14.

    Article  CAS  Google Scholar 

  • Arora, B., Mohanty, B. P., & McGuire, J. T. (2011). Inverse estimation of parameters for multidomain flow models in soil columns with different macropore densities. Water Resources Research, 47, 1–17.

    Article  Google Scholar 

  • Ball, W. P., & Roberts, P. V. (1991). Long-term sorption of halogenated organic chemicals by aquifer material 2. Intraparticle diffusion. Environmental Science and Technology, 25(7), 1237–1249.

    Article  CAS  Google Scholar 

  • Brusseau, M. L., & Rao, P. S. C. (1990). Modeling solute transport in structured soils: a review. Geoderma, 46(1–3), 169–192.

    Article  Google Scholar 

  • Cameron, D. R., & Klute, A. (1977). Convective-dispersive solute transport with a combined equilibrium and kinetic adsorption model. Water Resources Research, 13(1), 183–188.

    Article  CAS  Google Scholar 

  • Casey, F. X. M., Jaynes, D. B., Horton, R., & Logsdon, S. D. (1999). Comparing field methods that estimate mobile-immobile model parameters. Soil Science Society of America Journal, 63(4), 800–806.

    Article  CAS  Google Scholar 

  • Coats, K. H., & Smith, B. D. (1964). Dead-end pore volume and dispersion in porous media. Society of Petroleum Engineers. Journal, 4(1), 73–84.

    Article  Google Scholar 

  • Cunningham, J. A., & Roberts, P. V. (1998). Use of temporal moments to investigate the effects of nonuniform grain-size distribution on the transport of sorbing solutes. Water Resources Research, 34(6), 1415–1425.

    Article  CAS  Google Scholar 

  • De Carvalho, J. R. F. G., & Delgado, J. M. P. Q. (2003). Effect of fluid properties on dispersion in flow through packed beds. AICHE Journal, 49(8), 1980–1985.

    Article  Google Scholar 

  • Delgado, J. M. P. Q. (2006). A critical review of dispersion in packed beds. Heat and Mass Transfer, 42(4), 279–310.

    Article  CAS  Google Scholar 

  • Ebach, E. A., & White, R. R. (1958). Mixing of fluids flowing through beds of packed solids. AICHE Journal, 4(2), 161–169.

    Article  CAS  Google Scholar 

  • Gao, G. Y., Zhan, H. B., Feng, S. Y., Fu, B. J., Ma, Y., & Huang, G. H. (2010). A new mobile-immobile model for reactive solute transport with scale-dependent dispersion. Water Resources Research, 46, 1–16.

    Article  Google Scholar 

  • Gao, G. Y., Zhan, H. B., Feng, S. Y., Fu, B. J., & Huang, G. H. (2012). A mobile-immobile model with an asymptotic scale-dependent dispersion function. Journal of Hydrology, 424, 172–183.

    Article  Google Scholar 

  • Gao, G. Y., Fu, B. J., Zhan, H. B., & Ma, Y. (2013). Contaminant transport in soil with depth-dependent reaction coefficients and time-dependent boundary conditions. Water Research, 47(7), 2507–2522.

    Article  CAS  Google Scholar 

  • Griffioen, J. W., Barry, D. A., & Parlange, J. Y. (1998). Interpretation of two-region model parameters. Water Resources Research, 34(3), 373–384.

    Article  CAS  Google Scholar 

  • Haggerty, R., & Gorelick, S. M. (1995). Multiple-rate mass-transfer for modeling diffusion and surface-reactions in media with pore-scale heterogeneity. Water Resources Research, 31(10), 2383–2400.

    Article  Google Scholar 

  • Haggerty, R., & Gorelick, S. M. (1998). Modeling mass transfer processes in soil columns with pore-scale heterogeneity. Soil Science Society of America Journal, 62(1), 62–74

  • Haggerty, R., McKenna, S. A., & Meigs, L. C. (2000). On the late-time behavior of tracer test breakthrough curves. Water Resources Research, 36(12), 3467–3479.

    Article  CAS  Google Scholar 

  • Harvey, C. F., & Gorelick, S. M. (2000). Rate-limited mass transfer or macrodispersion: which dominates plume evolution at the macrodispersion experiment (MADE) site. Water Resources Research, 36(3), 637–650.

    Article  Google Scholar 

  • Hiby, J. W. (1962). Longitudinal dispersion in single-phase liquid flow through ordered and random packings. In: Interact between fluid & particles, London Instn. Chem. Engrs., pp. 312–325.

  • Hollenbeck, K. J., Harvey, C. F., Haggerty, R., & Werth, C. J. (1999). A method for estimating distributions of mass transfer rate coefficients with application to purging and batch experiments. Journal of Contaminant Hydrology, 37(3–4), 367–388.

    Article  CAS  Google Scholar 

  • Jiang, S., Pang, L. P., Buchan, G. D., Simunek, J., Noonan, M. J., & Close, M. E. (2010). Modeling water flow and bacterial transport in undisturbed lysimeters under irrigations of dairy shed effluent and water using HYDRUS-1D. Water Research, 44(4), 1050–1061.

    Article  CAS  Google Scholar 

  • Kauffman, S. J., Bolster, C. H., Hornberger, G. M., Herman, J. S., & Mills, A. L. (1998). Rate-limited transport of hydroxyatrazine in an unsaturated soil. Environmental Science and Technology, 32(20), 3137–3141.

    Article  CAS  Google Scholar 

  • Knabner, P., Totsche, K. U., & Kogel Knabner, I. (1996). The modeling of reactive solute transport with sorption to mobile and immobile sorbents. 1. Experimental evidence and model development. Water Resources Research, 32(6), 1611–1622.

    Article  CAS  Google Scholar 

  • Koch, S., & Fluhler, H. (1993). Solute transport in aggregated porous media: comparing model independent and dependent parameter estimation. Water, Air, and Soil Pollution, 68(1–2), 275–289.

    Article  CAS  Google Scholar 

  • McKenna, S. A., Meigs, L. C., & Haggerty, R. (2001). Tracer tests in a fractured dolomite 3. Double-porosity, multiple-rate mass transfer processes in convergent flow tracer tests. Water Resources Research, 37(5), 1143–1154.

    Article  Google Scholar 

  • Nielsen, D. R., van Genuchten, M. T., & Biggar, J. W. (1986). Water flow and solute transport processes in the unsaturated zone. Water Resources Research, 22(9), 89S–108S.

    Article  Google Scholar 

  • Pedit, J. A., & Miller, C. T. (1995). Heterogeneous sorption processes in subsurface systems. 2. Diffusion modeling approaches. Environmental Science and Technology, 29(7), 1766–1772.

    Article  CAS  Google Scholar 

  • Piquemal, J. (1993). On the modeling conditions of mass-transfer in porous-media presenting capacitance effects by a dispersion-convection equation for the mobile fluid and a diffusion equation for the stagnant fluid. Transport in Porous Media, 10(3), 271–283.

    Article  CAS  Google Scholar 

  • Pugliese, L., & Poulsen, T. G. (2013). Linking gas and liquid pressure loss to particle size distribution and particle shape in granular filter materials. Water, Air, and Soil Pollution, 225(1), 1811.

    Article  Google Scholar 

  • Pugliese, L., & Poulsen, T. G. (2014). Estimating solute dispersion coefficients in porous media at low pore water velocities. Soil Science, 179(4), 175–181.

    Article  CAS  Google Scholar 

  • Pugliese, L., Poulsen, T. G., & Andreasen, R. R. (2012). Relating gas dispersion in porous media to medium tortuosity and anisotropy ratio. Water, Air, and Soil Pollution, 223(7), 4101–4118.

    Article  CAS  Google Scholar 

  • Pugliese, L., Poulsen, T. G., & Andreasen, R. R. (2013a). Biofilter media gas pressure loss as related to media particle size and particle shape. Journal of Environmental Engineering, 139(12), 1424–1431.

    Article  CAS  Google Scholar 

  • Pugliese, L., Poulsen, T. G., & Straface, S. (2013b). Gas-solute dispersivity ratio in granular porous media as related to particle size distribution and particle shape. Water, Air, and Soil Pollution, 224(9), 1691.

    Article  Google Scholar 

  • Rao, P. S. C., Rolston, D. E., Jessup, R. E., & Davidson, J. M. (1980). Solute transport in aggregated porous-media – theoretical and experimental evaluation. Soil Science Society of America Journal, 44(6), 1139–1146.

    Article  CAS  Google Scholar 

  • Sanchez-Vila, X., & Carrera, J. (2004). On the striking similarity between the moments of breakthrough curves for a heterogeneous medium and a homogeneous medium with a matrix diffusion term. Journal of Hydrology, 294(1–3), 164–175.

    Article  Google Scholar 

  • Sharma, P., & Poulsen, T. G. (2009). Gas phase dispersion in compost as a function of different water contents and air flow rates. Journal of Contaminant Hydrology, 107, 101–107.

    Article  CAS  Google Scholar 

  • Sharma, P., & Poulsen, T. G. (2010a). Gas dispersion and immobile gas content in granular porous media: effect of particle size nonuniformity. Soil Science, 175(9), 426–431.

    Article  CAS  Google Scholar 

  • Sharma, P., & Poulsen, T. G. (2010b). Gas dispersion and immobile gas volume in solid and porous particle biofilter materials at low air flow velocities. Journal of the Air & Waste Management Association, 60(7), 830–837.

    Article  CAS  Google Scholar 

  • Valocchi, A. J. (1990). Use of temporal moment analysis to study reactive solute transport in aggregated porous media. Geoderma, 46(1–3), 233–247.

    Article  Google Scholar 

  • Van Beinum, W., Meeussen, J. C. L., Edwards, A. C., & Van Riemsdijk, W. H. (2000). Transport of ions in physically heterogeneous systems; convection and diffusion in a column filled with alginate gel beads, predicted by two-region model. Water Research, 34(7), 2043–2050.

    Article  Google Scholar 

  • Van Genuchten, M. T., & Wierenga, P. J. (1976). Mass transfer studies in sorbing porous-media. 1. Analytical solutions. Soil Science Society of America Journal, 40(4), 473–480.

    Article  Google Scholar 

  • Wadell, H. (1935). Volume, shape and roundness of quartz particles. Journal of Geology, 43(3), 250–280.

    Article  Google Scholar 

  • Zhang, Z. H., & Brusseau, M. L. (1999). Nonideal transport of reactive solutes in heterogeneous porous media. 5 Simulating regional-scale behavior of a trichloroethene plume during pump-and-treat remediation. Water Resources Research, 35(10), 2921–2935.

    Article  CAS  Google Scholar 

  • Zinn, B., & Harvey, C. F. (2003). When good statistical models of aquifer heterogeneity go bad: a comparison of flow dispersion, and mass transfer in connected and multivariate Gaussian hydraulic conductivity fields. Water Resources Research, 39(3), 1–19.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Pugliese.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pugliese, L., Straface, S., Trujillo, B.M. et al. Relating Non-equilibrium Solute Transport and Porous Media Physical Characteristics. Water Air Soil Pollut 226, 59 (2015). https://doi.org/10.1007/s11270-015-2353-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2353-2

Keywords

Navigation