Predictivity Strength of the Spatial Variability of Phenanthrene Sorption Across Two Sandy Loam Fields

Abstract

Sorption is commonly agreed to be the major process underlying the transport and fate of polycyclic aromatic hydrocarbons (PAHs) in soils. However, there is still a scarcity of studies focusing on spatial variability at the field scale in particular. In order to investigate the variation in the field of phenanthrene sorption, bulk topsoil samples were taken in a 15 × 15-m grid from the plough layer in two sandy loam fields with different texture and organic carbon (OC) contents (140 samples in total). Batch experiments were performed using the adsorption method. Values for the partition coefficient K d (L kg−1) and the organic carbon partition coefficient K OC (L kg−1) agreed with the most frequently used models for PAH partitioning, as OC revealed a higher affinity for sorption. More complex models using different OC compartments, such as non-complexed organic carbon (NCOC) and complexed organic carbon (COC) separately, performed better than single K OC models, particularly for a subset including samples with Dexter n < 10 and OC <0.04 kg kg−1. The selected threshold revealed that K OC-based models proved to be applicable for more organic fields, while two-component models proved to be more accurate for the prediction of K d and retardation factor (R) for less organic soils. Moreover, OC did not fully reflect the changes in phenanthrene retardation in the field with lower OC content (Faardrup). Bulk density and available water content influenced the phenanthrene transport mechanism phenomenon.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Abdul, A. S., Gibson, T. L., & Rai, D. N. (1987). Statistical correlations for predicting the partition-coefficient for nonpolar organic contaminants between aquifer organic-carbon and water. Hazardous Waste & Hazardous Materials, 4, 211–222.

    CAS  Google Scholar 

  2. Amellal, S., Boivin, A., Ganier, C. P., & Schiavon, M. (2006). High sorption of phenanthrene in agricultural soils. Agronomy for Sustainable Development, 26, 99–106.

    Article  CAS  Google Scholar 

  3. Cachada, A., Pereira, M. E., da Silva, E. F., & Duarte, A. C. (2012). Sources of potentially toxic elements and organic pollutants in an urban area subjected to an industrial impact. Environmental Monitoring and Assessment, 184, 15–32.

    Article  CAS  Google Scholar 

  4. Celis, R., de Jonge, H., de Jonge, L. W., Real, M., Hermosin, M. C., & Cornejo, J. (2006). The role of mineral and organic components in phenanthrene and dibenzofuran sorption by soil. European Journal of Soil Science, 57, 308–319.

    Article  CAS  Google Scholar 

  5. Charnay, M., Tuis, S., Coquet, Y., & Barriuso, E. (2005). Spatial variability in 14C-herbicide degradation in surface and subsurface soils. Pest Management Science, 61, 845–855.

    Article  CAS  Google Scholar 

  6. Chung, N., & Alexander, M. (2002). Effect of soil properties on bioavailability and extractability of phenanthrene and atrazine sequestered in soil. Chemosphere, 48, 109–115.

    Article  CAS  Google Scholar 

  7. Cousin, I. T., Beck, K., & Jones, K. J. (1999). A review of the processes involved in the exchange of semi-volatile organic compounds (SVOC) across the air-soil interface. Science of Total Environment, 228, 5–24.

    Article  Google Scholar 

  8. de Jonge, L. W., de Jonge, H., Moldrup, P., Jacobsen, O. H., & Christensen, B. T. (2000). Sorption of prochloraz on primary soil organomineral size separates. Journal of Environmental Quality, 29, 206–213.

    Article  Google Scholar 

  9. de Jonge, L. W., Moldrup, P., de Jonge, H., & Celis, R. (2008). Sorption and leaching of short-term-aged PAHs in eight European soils: link to physicochemical properties and leaching of dissolved organic carbon. Soil Science, 173, 13–24.

    Article  Google Scholar 

  10. DeLapp, R. C., & LeBoeuf, E. J. (2004). Thermal analysis of whole soils and sediment. Journal of Environmental Quality, 33, 330–337.

    Article  CAS  Google Scholar 

  11. Dexter, A. R., Richard, G., Arrouay, D., Czyz, E. A., Jolivet, C., & Duval, O. (2008). Complexed organic matter controls soil physical properties. Geoderma, 144, 620–627.

    Article  CAS  Google Scholar 

  12. Gaultier, J., Farenhorst, A., & Crow, G. (2006). Spatial variability of soil properties and 2,4-D sorption in a hummocky field as affected by landscape position and soil depth. Canadian Journal of Soil Science, 86, 89–95.

    Article  CAS  Google Scholar 

  13. Gee, G. W., & Or, D. (2002). Methods of soil analysis, part 4—physical methods (5th ed.). Madison: Soil Science Society of America.

    Google Scholar 

  14. Goderya, F. S. (1998). Field scale variations in soil properties for spatially variable control: a review. Journal of Soil Contamination, 7, 243–264.

    Article  CAS  Google Scholar 

  15. Gregorich, E., & Anderson, D. (1985). Effects of cultivation and erosion on soils of four toposequences in the Canadian prairies. Geoderma, 36, 343–354.

    Article  Google Scholar 

  16. Hassett, J. J., & Banwart, W. L. (1989). The sorption of nonpolar organics by soils and sediments. In B. L. Sawhney & K. Brown (Eds.), Reactions and movement of organic chemicals in soils. Madison: SSSA Spec. Publ. 22, Soil Science Society of America Inc.

    Google Scholar 

  17. Huang, W., Peng, P., Yu, Z., & Fu, J. (2003). Effects of organic matter heterogeneity on sorption and desorption of organic contaminants by soils and sediments. Applied Geochemistry, 18, 955–972.

    Article  CAS  Google Scholar 

  18. Jones, K. D., & Tiller, C. L. (1999). Effect of solution chemistry on the extent of binding of phenanthrene by a soil humic acid: a comparison of dissolved and clay bound humic. Environmental Science & Technology, 33, 580–587.

    Article  CAS  Google Scholar 

  19. Karickhoff, S. W. (1981). Semi-empirical estimation of sorption of hydrophobic pollutants on natural sediments and soils. Chemosphere, 10, 833–846.

    Article  CAS  Google Scholar 

  20. Karickhoff, S. W., Brown, D. S., & Scott, T. A. (1979). Sorption of hydrophobic pollutants on natural sediments. Water Research, 13, 241–248.

    Article  CAS  Google Scholar 

  21. Kiersch, K., Jandl, G., Meissner, R., & Leinweber, P. (2010). Small scale variability of chlorinated POPs in the river Elbe floodplain soils (Germany). Chemosphere, 79, 745–753.

    Article  CAS  Google Scholar 

  22. Kjaer, J., Olsen, P., Bach, K., Barlebo, H. C., Ingerslev, F., Hansen, M., & Sorensen, B. H. (2007). Leaching of estrogenic hormones from manure-treated structured soils. Environmental Science & Technology, 41, 3911–3917.

    Article  Google Scholar 

  23. Kjaer, J., Rosenbom, A. E., Brusch, W., Juhler, R. K., Gudmundsson, L., Plauborg, F., Grant, R., & Olsen, P. (2011). The Danish pesticide leaching assessment programme: monitoring results May 1999–June 2010. Copenhagen: Geological Survey of Denmark and Greenland.

    Google Scholar 

  24. Kumari, K. G. I. D., Moldrup, P., Paradelo, M., & de Jonge, L. W. (2014). Phenanthrene sorption on bio-char amended soils: application rate, aging, and physicochemical properties of soil. Water, Air, and Soil Pollution, 225, 2105.

    Article  Google Scholar 

  25. Laor, Y., Farmer, W. J., Aochi, Y., & Strom, P. (1998). Phenanthrene binding and sorption to dissolved and to mineral-associated humic acid. Water Research, 32, 1923–1931.

    Article  CAS  Google Scholar 

  26. Liang, Y., Zhang, X., Wang, J., & Li, G. (2012). Spatial variations of hydrocarbon contamination and soil properties in oil exploring fields across China. Journal of Hazardous Materials, 241–242, 371–378.

    Article  Google Scholar 

  27. Lindhardt, B., Abildrup, C., Vosgerau, H., Olsen, P., Torp, S., Iversen, B. V., Jorgensen, J. O., Plauborg, F., Rasmussen, P., & Gravesen, P. (2001). The Danish Pesticide Leaching Assessment Programme: Site characterization and monitoring design. (ISBN 87-7871-094-4). Available from Geological Survey of Denmark and Greenland.

  28. Loll, P., & Moldrup, P. (2000). Stochastic analyses of field-scale pesticide leaching risk as influenced by spatial variability in physical and biochemical parameters. Water Resources Research, 36, 959–970.

    Article  CAS  Google Scholar 

  29. Luo, L., Zhang, S., & Ma, Y. (2008). Evaluation of impacts of soil fractions on phenanthrene sorption. Chemosphere, 72, 891–896.

    Article  CAS  Google Scholar 

  30. Magee, B. R., Lion, L. W., & Lemley, A. T. (1991). Transport of dissolved organic macromolecules and their effect on the transport of phenanthrene in porous media. Environmental Science & Technology, 25, 323–331.

    Article  CAS  Google Scholar 

  31. Muller, K., Smith, R. E., James, T. K., Holland, P. T., & Rahman, A. (2003). Spatial variability of atrazine dissipation in an allophanic soil. Pest Management Science, 59, 893–903.

    Article  Google Scholar 

  32. Murphy, E. M., Zachara, J. M., & Smith, S. C. (1990). Influence of mineral-bound humic substances on the sorption of hydrophobic organic compounds. Environmental Science & Technology, 24, 1507–1516.

    Article  CAS  Google Scholar 

  33. Nielsen, D. R., Biggar, J. W., & Erh, K. T. (1973). Spatial variability of field-measured soil-water properties. Hilgardia, 42, 215–259.

    Article  Google Scholar 

  34. Njoroge, B. N. K., Ball, W. P., & Cherry, R. S. (1998). Sorption of 1,2,4-trichlorobenzene and tetrachloroethene within an authigenic soil profile: changes in KOC with soil depth. Journal of Contaminant Hydrology, 29, 347–377.

    Article  Google Scholar 

  35. Ping, L., Lou, Y., Wu, L., Qian, W., Song, J., & Christie, P. (2006). Phenanthrene adsorption by soils treated with humic substances under different pH and temperature conditions. Environmental Geochemistry and Health, 28, 189–195.

    Article  CAS  Google Scholar 

  36. Ran, Y., Huang, W., Rao, P. S. C., Liu, D., Sheng, G., & Fu, J. (2002). The role of condensed organic matter in the nonlinear sorption of hydrophobic organic contaminants by a peat and sediments. Journal of Environmental Quality, 31, 1953–1962.

    Article  CAS  Google Scholar 

  37. Reeves, W. R., McDonald, T. J., Cizmas, L., & Donnely, K. C. (2004). Partitioning and desorption behavior of polycyclic aromatic hydrocarbons from disparate sources. Science of Total Environment, 332, 183–192.

    Article  CAS  Google Scholar 

  38. Schlautman, M. A., & Morgan, J. (1993). Effects of aqueous chemistry on the binding of polycyclic aromatic hydrocarbons by dissolved humic materials. Environmental Science & Technology, 27, 961–969.

    Article  CAS  Google Scholar 

  39. Schwarzenbach, R. P., & Westall, P. (1981). Transport of nonpolar organic compounds from surface water to groundwater. Laboratory sorption studies. Environmental Science & Technology, 15, 1360–1367.

    Article  CAS  Google Scholar 

  40. Site, D. (2000). Factors affecting sorption of organic compounds in natural sorbent/water systems and sorption coefficients for selected pollutants. A review. Journal of Physical and Chemical Reference Data, 30, 187–439.

    Article  Google Scholar 

  41. Soares, A. A., Minh, L. N., Vendelboe, A. L., Schjonning, P., & de Jonge, L. W. (2013). Sorption of phenanthrene on agricultural soils. Water, Air, and Soil Pollution, 224, 1519–1530.

    Article  Google Scholar 

  42. Styrishave, B., Bjorklund, E., Johnsen, A., & Halling-Sorensen, B. (2012). The spatial heterogeneity of polycyclic aromatic hydrocarbons in soil depends on their physico-chemical properties. Water, Air, and Soil Pollution, 223, 969–977.

    Article  CAS  Google Scholar 

  43. Umali, B. P., Oliver, D. P., Ostendorf, B., Forrester, S., Chittleborough, D. J., Hutson, J. L., & Kookana, R. S. (2012). Spatial distribution of diuron sorption affinity as affected by soil, terrain and management practices in an intensively managed apple orchard. Journal of Hazardous Materials, 217–218, 398–405.

    Article  Google Scholar 

  44. Vinther, F. P., Brinch, U. C., Elsgaard, I., Fredslund, L., Iversen, B. V., Torp, S., & Jacobsen, C. S. (2008). Field-scale variation in microbial activity and soil properties in relation to mineralization and sorption of pesticides in a sandy soil. Journal of Environmental Quality, 37, 1710–1718.

    Article  CAS  Google Scholar 

  45. Wauchope, R. D., Yeh, S., Linders, J. B. H. J., Kloskowski, R., Tanaka, K., Rubin, B., Katayama, A., Kördel, W., Gerstl, Z., Lane, M., & Unsworth, J. B. (2002). Pesticide soil sorption parameters: theory, measurement, uses, limitations and reliability. Pest Management Science, 58, 419–445.

    Article  CAS  Google Scholar 

  46. Wilcke, W. (2000). Polycyclic aromatic hydrocarbons (PAHs) in soil—a review. Journal of Plant Nutrition and Soil Science, 163, 229–248.

    Article  CAS  Google Scholar 

  47. Yang, L., Jin, M., Tong, C., & Xie, S. (2013). Study of dynamic sorption and desorption of polycyclic aromatic hydrocarbons in silty-clay soil. Journal of Hazardous Materials, 244–245, 77–85.

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded as part of the large framework project Soil Infrastructure, Interfaces and Translocation Processes in Inner Space (“Soil-it-is”) by the Danish Research Council for Technology and Production Sciences, by the Danish Pesticide Leaching Assessment Programme (www.pesticidvarsling.dk), by the European Union (FEDER funds through COMPETE) and by Fundação para a Ciência e Tecnologia (FCT) through the project Pest-C/EQB/LA0006/2013. António Soares is grateful to FCT for his doctoral research grant (SFRH/BD/69565/2010) financed through POPH-QREN, Tipologia 4.1 e Formação Avançada, and subsidized by Fundo Social Europeu and Ministério da Ciência, Tecnologia e Ensino Superior. M. Paradelo is financially supported by a postdoctoral contract from the Plan I2C, Xunta de Galicia. To all financing sources, the authors are greatly indebted.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Antonio Soares.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Soares, A., Paradelo, M., Moldrup, P. et al. Predictivity Strength of the Spatial Variability of Phenanthrene Sorption Across Two Sandy Loam Fields. Water Air Soil Pollut 226, 36 (2015). https://doi.org/10.1007/s11270-015-2305-x

Download citation

Keywords

  • Sorption
  • Soil organic carbon
  • Complexed organic carbon
  • Non-complexed organic carbon
  • Phenanthrene
  • Field-scale
  • Leaching risk