Skip to main content

Advertisement

Log in

Detecting Small-Scale Variability of Trace Elements in a Shallow Aquifer

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Groundwater samples collected from an unconfined shallow aquifer were analysed for major and trace element (TE) concentrations with the aim to investigate small-scale variations possibly linked to fertilizer residual products applied until 2004. The field site, located near Ferrara (Northern Italy), covers an area of 200 m2 and was a former agricultural field then converted into a park and equipped with a grid of 13 monitoring wells. Three monitoring campaigns were carried out in June 2007, March and June 2009 in order to detect spatial and temporal variations in water quality. Groundwater nitrate, chloride, bromide and sulphate concentrations decreased with time indicating that the fertilizer plume was slowly replaced by unpolluted groundwater. However, the groundwater composition showed values of TEs (Fe, Mn, Al, As and Hg) above the recommended international and national guideline values. Dissolved TE concentrations varied randomly in the three campaigns, while TEs in the solid matrix did not show particular enrichment factors induced by fertilizer use. The data indicated that the dominant factor involved in determining small-scale spatial variability of TE concentrations in this shallow aquifer was the sediment-water interaction, while the temporal variation of TEs was driven by the organic matter leaching from the topsoil and by water table oscillations, which in turn drove the groundwater redox status. This study emphasizes the need of small-scale TE spatial resolution to discriminate between anthropogenic non-point sources of pollution (like fertilizers) and background concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdel-Haleem, A. S., Sroor, A., El-Bahi, S. M., & Zohny, E. (2001). Heavy metals and rare earth elements in phosphate fertilizer components using instrumental neutron activation analysis. Applied Radiation and Isotopes, 55, 569–573.

    Article  CAS  Google Scholar 

  • Amorosi, A., & Sammartino, I. (2007). Influence of sediment provenance on background values of potential toxic metals from near-surface sediments of Po coastal plain (Italy). International Journal of Earth Sciences, 96, 389–396.

    Article  CAS  Google Scholar 

  • Amorosi, A., Colalongo, M. L., Fusco, F., Pasini, G., & Fiorini, F. (1999). Glacio-eustatic control of continental-shallow marine cyclicity from Late Quaternary deposits of the southeastern Po Plain (Northern Italy). Quaternary Resources, 52, 1–13.

    Google Scholar 

  • Amorosi, A., Centineo, M. C., Dinelli, E., Lucchini, F., & Tateo, F. (2002). Geochemical and mineralogical variations as indicators of provenance changes in Late Quaternary deposits of SE Po plain. Sedimentary Geology, 151, 273–292.

    Article  CAS  Google Scholar 

  • Appelo, C. A. J., & Postma, D. (2005). Geochemistry, groundwater and pollution 2nd edition. Rotterdam: Balkema.

    Book  Google Scholar 

  • Christensen, T. H., Bjerg, P. L., Banwart, S. A., Jakobsen, R., Heron, G., & Albrechtsen, H. (2000). Characterization of redox conditions in groundwater contaminant plumes. Journal of Contaminant Hydrology, 45, 165–241.

    Article  CAS  Google Scholar 

  • Curzi, P. V., Dinelli, E., Ricci Lucchi, M., & Vaiani, S. C. (2006). Palaeoenvironmental control on sediment composition and provenance in the late Quaternary deltaic succession: a case study from the Po delta area (Northern Italy). Geological Journal, 41, 591–612.

    Article  CAS  Google Scholar 

  • D.L. 31/2001. Decreto legislativo 2 febbraio 2001, n. 31, attuazione della direttiva 98/83/CE relativa alla qualità delle acque destinate al consumo umano. Gazzetta Ufficiale n. 52 del 03/03/2001.

  • Davis, S. N., Whittemone, D. O., & Fabryka-Martin, J. (1998). Uses of chloride/bromide ratios in studies of potable water. Ground Water, 36(2), 338–350.

    Article  CAS  Google Scholar 

  • EU Directive 98/83/CE. (1998). Council directive of 3 November 1998 on the quality of water intended for human consumption. Official Journal of the European Union L, 330, 32 (5/12/1998).

    Google Scholar 

  • Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z., Freney, J. R., Martinelli, L. A., et al. (2008). Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science, 320, 889–892.

    Article  CAS  Google Scholar 

  • Gehl, R. J., Schmidt, J. P., Stone, L. R., Schlegel, A. J., & Clark, G. A. (2002). In situ measurements of nitrate leaching implicate poor nitrogen and irrigation management on sandy soil. Journal of Environmental Quality, 34, 2243–2254.

    Article  Google Scholar 

  • Haitzer, M., Aiken, G. R., & Ryan, J. N. (2002). Binding of mercury (II) to dissolved organic matter: the role of the mercury-to-DOM concentration ratio. Environmental Science and Technology, 36, 3564–70.

  • Helena, B., Pardo, R., Vega, M., Barrado, E., Fernandez, J. M., & Fernandez, L. (2000). Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water Researches, 34(3), 807–816.

    Article  CAS  Google Scholar 

  • Ibendahl, G., & Fleming, R. A. (2007). Controlling aquifer nitrogen levels when fertilizing crops: a study of groundwater contamination and denitrification. Ecological Modelling, 205, 507–514.

    Article  CAS  Google Scholar 

  • Katz, B. K., Ebert, S. M., & Kauffman, L. J. (2011). Using Cl/Br ratios and other indicators to assess potential impacts on groundwater quality from septic systems: a review and examples from principal aquifers in the United States. Journal of Hydrology, 397, 151–166.

    Article  CAS  Google Scholar 

  • Köhler, K., Duynisveld, W. H. M., & Böttcher, J. (2006). Nitrogen fertilization and nitrate leaching into groundwater on arable sandy soils. Journal of Plant Nutrition and Soil Science, 169, 185–195.

    Article  Google Scholar 

  • Lükewille, A., & Van Breemen, N. (1992). Aluminium precipitates from groundwater of an aquifer affected by acid atmospheric deposition in the Senne, northern Germany. Water, Air, and Soil Pollution, 63, 411–416.

    Article  Google Scholar 

  • Marconi, V., Dinelli, E., Antonellini, M., Capaccioni, B., Balugani, E., & Gabbianelli, G. (2009). Hydrogeochemical characterization of the phreatic system of the coastal wetland located between Fiumi Uniti and Bevano rivers in the southern Po plain (Northern Italy). Geophysical Research Abstract 11, EGU2009-9771, EGU General Assembly 2009.

  • Mastrocicco, M., Vignoli, G., Colombani, N., & Abu Zeid, N. (2010). Surface electrical resistivity tomography and hydrogeological characterization to constrain groundwater flow modelling in an agricultural field site near Ferrara (Italy). Environmental Earth Sciences, 61(2), 311–322.

    Article  Google Scholar 

  • Mastrocicco, M., Colombani, N., Castaldelli, G., & Jovanovic, N. (2011). Monitoring and modelling nitrate persistence in a shallow aquifer. Water, Air, & Soil Pollution, 217(1–4), 83–93.

    Article  CAS  Google Scholar 

  • Mastrocicco, M., Giambastiani, B. M. S., Severi, P., & Colombani, N. (2012). The importance of data acquisition techniques in saltwater intrusion monitoring. Water Resources Management, 26, 2851–2866.

    Article  Google Scholar 

  • McMahon, P. B., Böhlke, J. K., Kauffman, L. J., Kipp, K. L., Landon, M. K., Crandall, C. A., et al. (2008). Source and transport controls on the movement of nitrate to public supply wells in selected principal aquifers of the United States. Water Resources Research, 44, 1–17.

    Google Scholar 

  • Molinari, A., Guadagnini, L., Marcaccio, M., & Guadagnini, A. (2012). Natural background levels and threshold values of chemical species in three large-scale groundwater bodies in Northern Italy. Science of the Total Environment, 425, 9–19.

    Article  CAS  Google Scholar 

  • Molinari, A., Guadagnini, L., Marcaccio, M., Straface, S., Sanchez-Villa, X., & Guadagnini, A. (2013). Arsenic release from deep natural solid matrices under experimentally controlled redox conditions. Science of the Total Environment, 44, 231–240.

    Article  Google Scholar 

  • Nouri, J., Mahvi, A. H., Jahed, G. R., & Babaei, A. A. (2008). Regional distribution pattern of groundwater heavy metals resulting from agricultural activities. Environmental Geology, 55, 1337–1343.

    Article  CAS  Google Scholar 

  • Otero, N., Vitòria, L., Soler, A., & Canals, A. (2005). Fertilizer characterisation: major, trace and rare earth elements. Applied Geochemistry, 20, 1473–1488.

    Article  CAS  Google Scholar 

  • Perego, A., Basile, A., Bonfante, A., De Mascellis, R., Terribile, F., Brenna, S., & Acutis, M. (2012). Nitrate leaching under maize cropping systems in Po Valley (Italy). Agriculture, Ecosystems and Environment, 147, 57–65.

    Article  CAS  Google Scholar 

  • Senesi, N., & Polemio, M. (1981). Trace element addition to soil by application of NPK fertilizers. Fertilizer Research, 2, 289–302.

    Article  CAS  Google Scholar 

  • Stark, C. H., & Richards, K. G. (2008). The continuing challenge of agricultural nitrogen loss to the environment in the context of global change and advancing research. Dynamic Soil Dynamic Plant, 2, 1–12.

    Google Scholar 

  • Tiessen, H., & Moir, J.O. (1993) Total and organic carbon. In M.R. Carter (Ed.), Soil sampling and methods of analysis, Chapter 21 (pp. 187–211). Lewis Publishers.

  • U.S.EPA. (2009). http://water.epa.gov/drink/contaminants/index.cfm#inorganic. Accessed 9 Jul 2014.

  • U.S.EPA, (2003). Drinking water standards. Washington: Office of Drinking Water, US Environmental Protection Agency.

    Google Scholar 

  • Vengosh, A., & Pankratov, I. (1998). Chloride/bromide and chloride/fluoride ratios of domestic sewage effluents and associated contaminated ground water. Ground Water, 36, 815–824.

    Article  CAS  Google Scholar 

  • WHO. (1996). Guidelines for drinking-water quality, 2nd ed. Health criteria and other supporting information (Vol. 2). Geneva: World Health Organization.

    Google Scholar 

  • WHO. (2008). Guidelines for drinking-water quality (Recommendations. Incorporating 1st and 2nd addenda 3rd ed., Vol. 1). Geneva: World Health Organization.

    Google Scholar 

  • Wongsasuluk, P., Chotpantarat, S., Siriwong, W., & Robson, M. (2014). Heavy metal contamination and human health risk assessment in drinking water from shallow groundwater wells in an agricultural area in Ubon Ratchathani province, Thailand. Environmental Geochemistry and Health, 36(1), 169–182.

    Article  CAS  Google Scholar 

  • Zhao, K., Liu, X., Xu, J., & Selim, H. M. (2010). Heavy metal contaminations in a soil–rice system: identification of spatial dependence in relation to soil properties of paddy fields. Journal of Hazardous Materials, 181, 778–787.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Micòl Mastrocicco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giambastiani, B.M.S., Colombani, N. & Mastrocicco, M. Detecting Small-Scale Variability of Trace Elements in a Shallow Aquifer. Water Air Soil Pollut 226, 7 (2015). https://doi.org/10.1007/s11270-014-2283-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-2283-4

Keywords

Navigation