Skip to main content
Log in

Mercury and Selected Trace Elements from a Remote (Gosainkunda) and an Urban (Phewa) Lake Waters of Nepal

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Two lakes, one from the remote high altitude on the southern slope of the Himalaya (Lake Gosainkunda) and another from the urban mid-hill area (Lake Phewa) were studied for evaluating anthropogenic inputs of the pollutants, particularly mercury (Hg) and other trace elements (TEs) (such as Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb). A total of 77 water samples, 24 from Lake Gosainkunda and 53 from Lake Phewa were collected from different depth profiles during October/November 2010. Concentrations of Hg were significantly higher in Lake Gosainkunda compared to Lake Phewa probably due to long-range transport of Hg and its deposition on high altitudes of the Himalayas, in addition to the probable natural geological sources. Some of the TEs (such as Al, V, Cr, Mn, Fe, and Co) show crustal origin in Lake Gosainkunda, whereas others such as Ni, Cu, Zn, Cd, and Pb indicate possible anthropogenic origin (enrichment factor (EF) > 4). On the other hand, Al, V, Cr, Ni, and Cu show crustal origin in Lake Phewa and the remaining TEs (Mn, Fe, Co, Zn, Cd, and Pb) showed high EF values relative to the crustal elements suggesting potential anthropogenic inputs of the pollutants. The study further indicates that two studied lakes have different potential sources for Mn, Fe, Co, Ni, and Cu regarding TE pollution. A high enrichment of Cd and Pb in high-altitude lake (with less anthropogenic activities) compared to the low-altitude lake (with high anthropogenic activities) indicates atmospheric long-range transportation of the pollutants in remote areas of the Himalayas which might be possible as air masses pass through the industrial areas and deposit in the high altitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adachi, K., & Tainosho, Y. (2004). Characterization of heavy metal particles embedded in tire dust. Environment International, 30, 1009–1017.

    Article  CAS  Google Scholar 

  • Adokoh, C. K., Obodai, E. A., Essumang, D. K., Serfor-Armah, Y., Nyarko, B. J. B., & Asabere-Ameyaw, A. (2011). Statistical evaluation of environmental contamination, distribution and source assessment of heavy metals (Aluminum, Arsenic, Cadmium, and Mercury) in some lagoons and an estuary along the coastal belt of Ghana. Archive of Environmental Contamination and Toxicology, 61, 389–400.

    Article  CAS  Google Scholar 

  • Barałkiewicz, D., & Siepak, J. (1999). Chromium, nickel and cobalt in environmental samples and existing legal norms. Polish Journal of Environmental Studies, 8, 201–208.

    Google Scholar 

  • Blais, J. M., Charpentié, S., Pick, F., Kimpe, L. E., Amand, A. S., & Regnault-Roger, C. (2006). Mercury, polybrominateddiphenyl ether, organochlorine pesticide, and polychlorinated biphenyl concentrations in fish from lakes along an elevation transect in the French Pyrénées. Ecotoxicology and Environmental Safety, 63, 91–99.

    Article  CAS  Google Scholar 

  • Bowles, K. C., Apte, S. C., Maher, W. A., & Bluhdorn, D. R. (2003). Mercury cycling in Lake Gordon and Lake Pedder, Tasmania (Australia). II: catchment processes. Water, Air, and Soil Pollution, 147, 25–38.

    Article  CAS  Google Scholar 

  • Cong, Z., Kang, S., Liu, X., & Wang, G. (2007). Elemental composition of aerosol in the Nam Co region, Tibetan Plateau, during summer monsoon season. Atmospheric Environment, 41, 1180–1187.

    Article  CAS  Google Scholar 

  • Cong, Z., Kang, S., Zhang, Y., & Li, X. (2010). Atmospheric wet deposition of trace elements to central Tibetan Plateau. Applied Geochemistry, 25, 1415–1421.

    Article  CAS  Google Scholar 

  • Covelli, S., & Fontolan, G. (1997). Application of a normalization procedure in determining regional geochemical baselines. Environmental Geology, 30, 34–45.

    Article  CAS  Google Scholar 

  • Driscoll, C. T., Han, Y.-J., Chen, C. Y., Evers, D. C., Lambert, K. F., Holsen, et al. (2007). Mercury contamination in forest and freshwater ecosystems in the Northeastern United States. BioScience, 57, 17–28.

    Article  Google Scholar 

  • Fu, X. W., Feng, X., Dong, Z. Q., Yin, R. S., Wang, J. X., Yang, Z. R., et al. (2010). Atmospheric gaseous elemental mercury (GEM) concentrations and mercury deposition at a high-altitude mountain peak in south China. Atmospheric Chemistry and Physics, 10, 2425–2537.

    Article  CAS  Google Scholar 

  • Hines, N. A., & Brezonik, P. L. (2007). Mercury inputs and outputs at a small lake in northern Minnesota. Biogeochemistry, 84, 265–284.

    Article  CAS  Google Scholar 

  • Huang, J., Minnis, P., Yi, Y., Tang, Q., Wang, X., Hu, Y., et al. (2007). Summer dust aerosols detected from CALIPSO over the Tibetan Plateau. Geophysical Research Letters, 34, L18805. doi:10.1029/2007GL029938.

    Article  Google Scholar 

  • Huang, X., Sillanpää, M., Duo, B., & Gjessing, E. T. (2008). Water quality in the Tibetan Plateau: metal contents of four selected rivers. Environmental Pollution, 156, 270–277.

    Article  CAS  Google Scholar 

  • Huang, X., Sillanpää, M., Gjessing, E. T., & Vogt, R. D. (2009). Water quality in the Tibetan Plateau: major ions and trace elements in the headwaters of four major Asian rivers. Science of the Total Environment, 407, 6242–6254.

    Article  CAS  Google Scholar 

  • Huang, X., Sillanpää, M., Gjessing, E. T., Peräniemi, S., & Vogt, R. D. (2011). Water quality in the Southern Tibetan Plateau: chemical evaluation of the Yarlung Tsangpo (Brahmaputra). River Research and Applications, 27, 113–121.

    Article  Google Scholar 

  • Huang, J., Kang, S., Wang, S., Wang, L., Zhang, Q., Guo, J., et al. (2013). Wet deposition of mercury at Lhasa, the capital city of Tibet. Science of the Total Environment, 447, 123–132.

    Article  CAS  Google Scholar 

  • Ikem, A., Egiebor, N. O., & Nyavor, K. (2003). Trace elements in water, fish and sediment from Tuskegee Lake, Southeastern USA. Water, Air, and Soil Pollution, 149, 51–75.

    Article  CAS  Google Scholar 

  • Jin, J., You, C.-F., Yu, T.-L., & Wang, B.-S. (2010). Sources and flux of trace elements in river water collected from the Lake Qinghai catchment, NE Tibetan Plateau. Applied Geochemistry, 25, 1536–1546.

    Article  CAS  Google Scholar 

  • Kim, G., Skudlark, J. R., & Church, T. M. (2000). Atmospheric wet deposition of trace elements to Chesapeake and Delaware Bays. Atmospheric Environment, 34, 3437–3444.

    Article  CAS  Google Scholar 

  • Kowalski, A., Siepak, M., & Boszke, L. (2007). Mercury contamination of surface and ground waters of Poznań, Poland. Polish Journal of Environmental Studies, 16, 67–74.

    CAS  Google Scholar 

  • Kyllönen, K., Karlsson, V., & Ruoho-Airola, T. (2009). Trace element deposition and trends during a ten year period in Finland. Science of Total Environment, 407, 2260–2269.

    Article  Google Scholar 

  • Lee, K., Hur, S. D., Hou, S., Hong, S., Qin, X., Ren, J., et al. (2008). Atmospheric pollution for trace elements in the remote high-altitude atmosphere in central Asia as recorded in snow from Mt. Qomolangma (Everest) of the Himalayas. Science of the Total Environment, 404, 171–181.

    Article  CAS  Google Scholar 

  • Li, C., Kang, S., & Zhang, Q. (2009). Elemental composition of Tibetan Plateau top soils and its effect on evaluating atmospheric pollution transport. Environmental Pollution, 157, 2261–2265.

    Article  CAS  Google Scholar 

  • Liu, B., Kang, S., Sun, J., Zhang, Y., Xu, R., Wang, Y., et al. (2013). Wet precipitation chemistry at a high-altitude site (3,326 m a.s.l.) in the southeastern Tibetan Plateau. Environmental Science and Pollution Research, 20, 5013–5027.

    Article  CAS  Google Scholar 

  • Loewen, M., Sharma, S., Tomy, G., Wang, F., Bullock, P., & Wania, F. (2005). Persistent organic pollutants and mercury in the Himalaya. Aquatic Ecosystem Health & Management, 8, 223–233.

    Article  CAS  Google Scholar 

  • Marusczak, N., Larose, C., Dommergue, A., Paquet, S., Beaulne, J.-S., Maury-Brachet, R., et al. (2011). Mercury and methylmercury concentrations in high altitude lakes and fish (Arctic Charr) from the French Alps related to watershed characteristics. Science of the Total Environment, 409, 1909–1915.

    Article  CAS  Google Scholar 

  • McConnell, J. R., & Edwards, R. (2008). Coal burning leaves toxic heavy metal legacy in the Arctic. Proceedings of the National Academy of Sciences of the United States of America, 105, 12140–12144.

    Article  CAS  Google Scholar 

  • Ming, J., Cachier, H., Xiao, C., Qin, D., Kang, S., Hou, S., et al. (2008). Black carbon record based on a shallow Himalayan ice core and its climatic implications. Atmospheric Chemistry and Physics, 8, 1343–1352.

    Article  CAS  Google Scholar 

  • Mohan, M., & Omana, P. K. (2008). Mercury pollution in Vembanadu Lake and adjoining Muvattupuza River, Kerala, India. In P. K. Mohanty (Ed.), Monitoring and modelling lakes and coastal environments (pp. 43–49). the Netherlands: Springer Link.

    Chapter  Google Scholar 

  • Moore, F., Forghani, G., & Qishlaqi, A. (2009). Assessment of heavy metal contamination in water and surface sediments of the Maharlu Saline Lake, SW Iran. Iranian Journal of Science & Technology, Transaction A, 33, 43–55.

    CAS  Google Scholar 

  • Nagaraju, M., Gossmann, H., & Lacaze, B. (1994). Trace elements geochemistry in the waters of Pulicat Lake, South India. GeoJournal, 34, 393–396.

    Google Scholar 

  • Nelson, S. J., Johnson, K. B., Weathers, K. C., Loftin, C. S., Fernandez, I. J., Kahl, J. S., et al. (2008). A comparison of winter mercury accumulation at forested and no-canopy sites measured with different snow sampling techniques. Applied Geochemistry, 23, 384–398.

    Article  CAS  Google Scholar 

  • Nguyen, H. L., Leermakers, M., Kurunczi, S., Bozo, L., & Baeyens, W. (2005). Mercury distribution and speciation in Lake Balaton, Hungary. Science of the Total Environment, 340, 231–246.

    Article  CAS  Google Scholar 

  • Nriagu, J. O. (1996). A history of global metalpollution. Science, 272, 223–224.

    Article  CAS  Google Scholar 

  • Obrist, D., Johnson, D. W., Lindberg, S. E., Luo, Y., Hararuk, O., Bracho, R., et al. (2011). Mercury distribution across 14 U.S. forests. Part 1: spatial patterns of concentrations in biomass, litter, and soils. Environmental Science and Technology, 45, 3974–3981.

    Article  CAS  Google Scholar 

  • Ozsoy, T., & Ornektekin, S. (2009). Trace elements in urban and suburban rainfall, Mersin, Northeastern Mediterranean. Atmospheric Research, 94, 203–219.

    Article  Google Scholar 

  • Pacyna, J. M., & Pacyna, E. G. (2001). An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide. Environmental Reviews, 9, 269–298.

    Article  CAS  Google Scholar 

  • Raut, R., Sharma, S., Bajracharya, R. M., Sharma, C. M., & Gurung, S. (2012). Physico-chemical characterization of Gosainkunda Lake. Nepal Journal of Science and Technology, 13, 107–114.

    Google Scholar 

  • Reynolds, B., Chapman, P. J., French, M. C., Jenkins, A., & Wheater, H. S. (1995). Major, minor, and trace metal chemistry of surface waters in the Everest region of Nepal. P Boulder Sym, Biogeochemistry of Seasonally Snow-Covered Catchments, IAHS Publication No., 228, 405–412.

    CAS  Google Scholar 

  • Rigét, F., Tamstorf, M. P., Larsen, M. M., Søndergaard, J., Asmund, G., Falk, J. M., et al. (2011). Mercury (Hg) transport in a high arctic river in northeast Greenland. Water, Air and Soil Pollution, 222, 233–242.

    Article  Google Scholar 

  • Sharat, S. N. K., Bino, D. C., Sudarshan, M., Sanamacha, M. N., Brajakumar, S. T., & Rajmuhon, S. N. (2013). Influence of Nambul River on the quality of fresh water in Loktak Lake. International Journal of Water Resources and Environmental Engineering, 5, 321–327.

    Google Scholar 

  • Sharma, C. M., Basnet, S., Kang, S., Rosseland, B. O., Zhang, Q., Pan, K., et al. (2013). Mercury concentrations in commercial fish species of Lake Phewa, Nepal. Bulletin of Environmental Contamination and Toxicology, 91, 272–277.

    Article  CAS  Google Scholar 

  • Sun, H.-F., Li, Y.-H., Ji, Y.-F., Yang, L.-S., Wang, W. Y., & Li, H.-R. (2010). Environmental contamination and health hazard of lead and cadmium around Chatian mercury mining deposit in Western Hunan Province, China. Transactions of Nonferrous Metals Society of China, 20, 308–314.

    Article  CAS  Google Scholar 

  • Taylor, S. R., & McLennan, S. M. (1995). The geochemical evolution of the continental crust. Reviews of Geophysics, 33, 241–265.

    Article  Google Scholar 

  • Tripathee, L., Kang, S., Huang, J., Sharma, C. M., Sillanpää, M., Gou, J., et al. (2014a). Concentrations of trace elements in wet deposition over the central Himalayas, Nepal. Atmospheric Environment, 95, 231–238.

    Article  CAS  Google Scholar 

  • Tripathee, L., Kang, S., Huang, J., Sillanpää, M., Sharma, C. M., Lucia Luthi, Z., et al. (2014b). Ionic composition of wet precipitation over the southern slope of central Himalayas, Nepal. Environmental Science and Pollution Research, 21, 2677–2687.

    Article  CAS  Google Scholar 

  • US EPA. (2002). Method 1631. Mercury in water by oxidation, purge and trap, and cold vapor atomic fluorescence spectrometry. Revision E. Washington , DC: Office of Water; [EPA-821-R-02-19].

  • Veselý, J. (2000). Trace elements in Bohemian forest lakes. Silva Gabreta, 4, 167–178.

    Google Scholar 

  • Wang, K., Kang, S., Guo, J., Zhang, Q., Huang, J., & Zheng, W. (2012). Spatial and temporal distribution of total mercury (T-Hg) in different water bodies of Nam Co, Tibetan Plateau. Environmental Science, 33, 2288–2294.

    Google Scholar 

  • Watras, C. J., Bloom, N. S., Claas, S. A., Morrison, K. A., Gilmour, C. C., & Craig, S. R. (1995). Methylmercury production in the anoxic hypolimnion of a Dimictic Seepage Lake. Water, Air and Soil Pollution, 80, 735–745.

    Article  CAS  Google Scholar 

  • Wedepohl, K. H. (1995). The composition of the continental crust. Geochimicaet Cosmochimica Acta, 59, 1217–1232.

    Article  CAS  Google Scholar 

  • WHO. (2004). Guideline for drinking water quality, vol. 1 (3rd ed.). Geneva: World Health Organization.

    Google Scholar 

  • Winchester, J. W., & Nifong, G. D. (1971). Water pollution in Lake Michigan by trace elements from pollution aerosol fallout. Water, Air and Soil Pollution, 1, 50–64.

    Article  CAS  Google Scholar 

  • Wise, J. P., Sr., Payne, R., Wise, S. S., La Certe, C., Wise, J., Gianios, C., Jr., et al. (2009). A global assessment of chromium pollution using sperm whales (Physeter macrocephalus) as an indicator species. Chemosphere, 75, 1461–1467.

    Article  CAS  Google Scholar 

  • Xing, W., & Liu, G. (2011). Iron biogeochemistry and its environmental impact in freshwater lakes. Fresenius Environmental Bulletin, 20, 1339–1345.

    CAS  Google Scholar 

  • Zayed, J., Guessous, A., Lambert, J., Carrier, G., & Philippe, S. (2003). Estimation of annual Mn emissions from MMT source in the Canadian environment and the Mn pollution index in each province. Science of the Total Environment, 312, 147–154.

    Article  CAS  Google Scholar 

  • Zhang, H., Yin, R., Feng, S., Sommar, J., Anderson, C. W. O. N., Sapkota, A., et al. (2013). Atmospheric mercury inputs in montane soils increase with elevation: evidence from mercury isotope signature. Scientific Reports, 3(3322), 1–8.

    Google Scholar 

  • Zheng, W., Kang, S., Feng, X., Zhang, Q., & Li, C. (2010). Mercury speciation and spatial distribution in surface waters of the Yarlung Zangbo River, Tibet. Chinese Science Bulletin, 24, 2697–2703.

    Article  Google Scholar 

  • Zhou, J., Wang, Y., Yue, T., Li, Y., Wai, K. M., & Wang, W. (2012). Origin and distribution of trace elements in high-elevation precipitation in southern China. Environmental Science and Pollution Research, 19, 3389–3399.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support from the National Natural Science Foundation of China (Grant Nos. 41225002 and 41121001), Chinese Academy of Sciences (XDB03030504, 2009Y2AZ10), State Key Laboratory of Cryospheric Sciences (SKLCS-ZZ-2013-01-01), and Academy of Finland (Grant No. 264307) are highly appreciated. The fieldwork was coordinated by the experts of Himalayan Environment Research Institute (HERI). MSc students of the Environmental Science at Kathmandu University and faculties (Dr. Smriti Gurung and Ms. Rosha Raut) deserve our sincere thanks for accompanying in the fieldwork.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chhatra Mani Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, C.M., Kang, S., Sillanpää, M. et al. Mercury and Selected Trace Elements from a Remote (Gosainkunda) and an Urban (Phewa) Lake Waters of Nepal. Water Air Soil Pollut 226, 6 (2015). https://doi.org/10.1007/s11270-014-2276-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-2276-3

Keywords

Navigation