Skip to main content
Log in

Adsorption and Oxidation of Thallium(I) by a Nanosized Manganese Dioxide

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The adsorption and oxidation of thallium(I) by nanosized manganese dioxide (nMnO2) may have an impact on the removal of Tl from waters in engineered applications, as well as the fate and transport of Tl in natural waters. The fundamental data on the adsorption and oxidation of Tl(I) by nMnO2 were obtained here. The results show that Tl was adsorbed by nMnO2 within 15 min at pH 7.0. Moreover, Langmuir fitting indicated a maximum adsorption capacity of ∼58.48 mg/mmol (i.e., ∼672 mgTl/gMnO2). The presence of Ca2+, Mg2+, SiO3 2−, PO4 3−, and CO3 2−decreased the removal of Tl(I) to a certain extent; however, it was increased by a pH from 4.0 to 9.0. The oxidation of Tl(I) was proposed at pH 4.0 based on the observation of Mn release and nMnO2 aggregation, while the oxidation of Tl(I) might not be favored at neutral and basic conditions. The presence of 3 mg/L humic acid hindered the adsorption of Tl(I) on nMnO2. These results indicate that nMnO2 could help to remove Tl from water in engineered applications and might deepen our understanding of the transport of Tl in natural waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baker, R. G. A., Rehkamper, M., Hinkley, T. K., Nielsen, S. G., & Toutain, J. P. (2009). Investigation of thallium fluxes from subaerial volcanism-implications for the present and past mass balance of thallium in the oceans. Geochim. Cosmochim. Acta, 73, 6340–6359.

    Article  CAS  Google Scholar 

  • Buffle, J., & Leppard, G. G. (1995). Characterization of aquatic colloids and macromolecules. 1. Structure and behavior of colloidal material. Environmental Science & Technology, 29, 2169–2175.

    Article  CAS  Google Scholar 

  • Chen, K. L., & Elimelech, M. (2006). Aggregation and deposition kinetics of fullerene (C60) nanoparticles. Langmuir, 22, 10994–11001.

    Article  CAS  Google Scholar 

  • Cvjetko, P., Cvjetko, I., & Pavlica, M. (2010). Thallium toxicity in humans. Arhiv Za Higijenu Rada I Toksikologiju, 61, 111–119.

    CAS  Google Scholar 

  • Ferreira, J. R., Lawlor, A. J., Bates, J. M., Clarke, K. J., & Tipping, E. (1997). Chemistry of riverine and estuarine suspended particles from the Ouse-Trent system, UK. Colloids Surf. A Physicochem. Eng. Asp, 120, 183–198.

    Article  CAS  Google Scholar 

  • Fu, G. M., Allen, H. E., & Cowan, C. E. (1991). Adsorption of cadmium and copper by manganese oxide. Soil Science, 152, 72–81.

    Article  CAS  Google Scholar 

  • Galvan-Arzate, S., & Santamaria, A. (1998). Thallium toxicity. Toxicology Letters, 99, 1–13.

    Article  CAS  Google Scholar 

  • Herszage, J., dos Santos Afonso, M., & Luther, G. W. (2003). Oxidation of cysteine and glutathione by soluble polymeric MnO2. Environmental Science & Technology, 37, 3332–3338.

    Article  CAS  Google Scholar 

  • Hua, M., Zhang, S., Pan, B., Zhang, W., Lv, L., & Zhang, Q. (2012). Heavy metal removal from water/wastewater by nanosized metal oxides: a review. Journal of Hazardous Materials, 211–212, 317–331.

    Article  Google Scholar 

  • Huangfu, X., Jiang, J., Ma, J., Liu, Y., & Yang, J. (2013). Aggregation kinetics of manganese dioxide colloids in aqueous solution: influence of humic substances and biomacromolecules. Environmental Science & Technology, 47, 10285–10292.

    CAS  Google Scholar 

  • Jiang, J., Pang, S. Y., & Ma, J. (2009). Oxidation of triclosan by permanganate (Mn(VII)): importance of ligands and in situ formed manganese oxides. Environmental Science & Technology, 43, 8326–8331.

    Article  CAS  Google Scholar 

  • Johnson, B. B. (1990). Effect of Ph, temperature, and concentration on the adsorption of cadmium on goethite. Environmental Science & Technology, 24, 112–118.

    Article  CAS  Google Scholar 

  • Lafferty, B. J., Ginder-Vogel, M., Zhu, M., Livi, K. J., & Sparks, D. L. (2010). Arsenite oxidation by a poorly crystalline manganese-oxide. 2. Results from X-ray absorption spectroscopy and X-ray diffraction. Environmental Science & Technology, 44, 8467–8472.

    Article  CAS  Google Scholar 

  • Landrot, G., Ginder-Vogel, M., Livi, K., Fitts, J. P., & Sparks, D. L. (2012). Chromium(III) oxidation by three poorly-crystalline manganese(IV) oxides. 1. Chromium(III)-oxidizing capacity. Environmental Science & Technology, 46, 11594–11600.

    Article  CAS  Google Scholar 

  • Law, S., & Turner, A. (2011). Thallium in the hydrosphere of south west England. Environmental Pollution, 159, 3484–3489.

    Article  CAS  Google Scholar 

  • Lienemann, C. P., Taillefert, M., Perret, D., & Gaillard, J. F. (1997). Association of cobalt and manganese in aquatic systems: chemical and microscopic evidence. Geochim. Cosmochim. Acta, 61, 1437–1446.

    Article  CAS  Google Scholar 

  • Lin, T. S., & Nriagu, J. (1998). Revised hydrolysis constants for thallium(I) and thallium(III) and the environmental implications. Journal of the Air & Waste Management Association, 48, 151–156.

    Article  CAS  Google Scholar 

  • Lin, T. S., & Nriagu, J. (1999). Thallium speciation in the Great Lakes. Environmental Science & Technology, 33, 3394–3397.

    Article  CAS  Google Scholar 

  • Liu, J., Lippold, H., Wang, J., Lippmann-Pipke, J., & Chen, Y. (2011). Sorption of thallium(I) onto geological materials: influence of pH and humic matter. Chemosphere, 82, 866–871.

    Article  CAS  Google Scholar 

  • Lockwood, R. A., & Chen, K. Y. (1973). Adsorption of Hg(ll) by hydrous manganese oxides. Environmental Science & Technology, 7, 1028–1034.

    Article  CAS  Google Scholar 

  • Ma, J., & Graham, N. (1996). Controlling the formation of chloroform by permanganate preoxidation—destruction of precursors. J. Water Supply Res. Technol. AQUA, 45, 308–315.

    CAS  Google Scholar 

  • Ma, J., Jiang, J., Pang, S., & Guo, J. (2007). Adsorptive fractionation of humic acid at air-water interfaces. Environmental Science & Technology, 41, 4959–4964.

    Article  CAS  Google Scholar 

  • Mathis, B. J., & Kevern, N. R. (1975). Distribution of mercury, cadmium, lead, and thallium in a eutrophic lake. Hydrobiologia, 46, 207–222.

    Article  CAS  Google Scholar 

  • Matthews, A. D., & Riley, J. P. (1970). The occurrence of thallium in sea water and marine sediments. Chemical Geology, 6, 149–152.

    Article  CAS  Google Scholar 

  • Memon, S. Q., Memon, N., Solangi, A. R., & Memon, J. U. R. (2008). Sawdust: a green and economical sorbent for thallium removal. Chemical Engineering Journal, 140, 235–240.

    Article  CAS  Google Scholar 

  • Murray, J. W. (1974a). The interaction of metal ions at the manganese dioxide-solution interface. Geochim. Cosmochim. Acta, 39, 505–519.

    Article  Google Scholar 

  • Murray, J. W. (1974b). The surface chemistry of hydrous manganese dioxide. Journal of Colloid and Interface Science, 46, 357–371.

    Article  CAS  Google Scholar 

  • Nielsen, S. G., Mar-Gerrison, S., Gannoun, A., LaRowe, D., Klemm, V., Halliday, A. N., Burton, K. W., & Hein, J. R. (2009). Thallium isotope evidence for a permanent increase in marine organic carbon export in the early Eocene. Earth and Planetary Science Letters, 278, 297–307.

    Article  CAS  Google Scholar 

  • Peacock, C. L., & Moon, E. M. (2012). Oxidative scavenging of thallium by birnessite: explanation for thallium enrichment and stable isotope fractionation in marine ferromanganese precipitates. Geochim. Cosmochim. Acta, 84, 297–313.

    Article  CAS  Google Scholar 

  • Posselt, H. S., Anderson, F. J., & Walter, W. J. (1968). Cation sorption on colloidal hydrous manganese dioxide. Environmental Science & Technology, 2, 1087–1093.

    Article  CAS  Google Scholar 

  • Pua, Y., Yang, X., Zheng, H., Wang, D., Su, Y., & He, J. (2013). Adsorption and desorption of thallium (I) on multiwalled carbon nanotubes. Chemical Engineering Journal, 219, 403–410.

    Article  Google Scholar 

  • Qin, Q. D., Wang, Q. Q., Fu, D. F., & Ma, J. (2011). An efficient approach for Pb(II) and Cd(II) removal using manganese dioxide formed in situ. Chemical Engineering Journal, 172, 68–74.

    Article  CAS  Google Scholar 

  • Rehkämper, M., & Nielsen, S. G. (2004). The mass balance of dissolved thallium in the oceans. Marine Chemistry, 85, 125–139.

    Article  Google Scholar 

  • Rehkämper, M., Frank, M., Hein, J. R., & Halliday, A. (2004). Cenozoic marine geochemistry of thallium deduces from isotopic studies of ferromanganese crusts and pelagic sediments. Earth and Planetary Science Letters, 219, 77–91.

    Article  Google Scholar 

  • Senol, Z. M., & Ulusoy, U. (2010). Thallium adsorption onto polyacryamide-aluminosilicate composites: a Tl isotope tracer study. Chemical Engineering Journal, 162, 97–105.

    Article  CAS  Google Scholar 

  • Stone, A. T., & Morgan, J. J. (1984). Reduction and dissolution of manganese(III) and manganese(IV) oxides by organics. 1. Reaction with hydroquinone. Environmental Science & Technology, 18, 450–456.

    Article  CAS  Google Scholar 

  • Tripathy, S. S., Bersillon, J. L., & Gopal, K. (2006). Adsorption of Cd2+ on hydrous manganese dioxide from aqueous solutions. Desalination, 194, 11–21.

    Article  CAS  Google Scholar 

  • Twining, B. S., Twiss, M. R., & Fisher, N. S. (2003). Oxidation of thallium by freshwater plankton communities. Environmental Science & Technology, 37, 2720–2726.

    Article  CAS  Google Scholar 

  • Waite, T. D., Wrigley, I. C., & Szymczak, R. (1988). Photoassisted dissolution of a colloidal manganese oxide in the presence of fulvic acid. Environmental Science & Technology, 22, 778–785.

    Article  CAS  Google Scholar 

  • Wang, Z. M., Lee, S. W., Kapoor, P., Tebo, B. M., & Giammar, D. E. (2013). Uraninite oxidation and dissolution induced by manganese oxide: a redox reaction between two insoluble minerals. Geochim. Cosmochim. Acta, 100, 24–40.

    Article  CAS  Google Scholar 

  • Wigginton, N. S., Haus, K. L., & Hochella, M. F., Jr. (2007). Aquatic environmental nanoparticles. Journal of the Air & Waste Management Association, 9, 1306–1316.

    CAS  Google Scholar 

  • Xiao, T., Yang, F., Li, S., Zheng, B., & Ning, Z. (2012). Thallium pollution in China: a geoenvironmental perspective. Science of the Total Environment, 421–422, 51–58.

    Article  Google Scholar 

  • Yao, W. S., & Millero, F. J. (1996). Adsorption of phosphate on manganese dioxide in seawater. Environmental Science & Technology, 30, 536–541.

    Article  CAS  Google Scholar 

  • Zitko, V. (1975). Toxicity and pollution potential of thallium. Science of the Total Environment, 4, 185–192.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Science and Technology Pillar Program, China (No. 2012BAC05B02), the Funds for Creative Research Groups of China (51121062), the National Natural Science Foundation of China (51008104), the funds of the State Key Laboratory of Urban Water Resource and Environment (HIT, 2013TS04), the Foundation for the Author of National Excellent Doctoral Dissertation of China (201346), and the Chinese Postdoctoral Science Foundation and the Special Financial Grant (20110490106 and 2012T50365).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huangfu, X., Jiang, J., Lu, X. et al. Adsorption and Oxidation of Thallium(I) by a Nanosized Manganese Dioxide. Water Air Soil Pollut 226, 2272 (2015). https://doi.org/10.1007/s11270-014-2272-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-2272-7

Keywords

Navigation