Skip to main content
Log in

Microbial Communities, Biomass, and Carbon Mineralization in Acidic, Nutrient-Poor Peatlands Impacted by Metal and Acid Deposition

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Peatlands serve as important stores of organic matter and regulators of nutrient and metal export to surface waters, yet relatively little is known regarding the impact of more than a century of metal, sulfur, and acid deposition on microbial activity in acidic, nutrient-poor peatlands that are common features around Sudbury, Ontario. In this study, eight peatlands were selected at varying distances from the Copper Cliff Smelter that was once the largest point source of sulfur dioxide and sampled for analysis of nutrient and metal content. Basal microbial respiration, relative response to substrate addition (four synthetic and four natural substrates) assessed as CO2 production rates and microbial biomass were assessed in surface (0–10 cm) peat samples. Bacterial and fungal communities within the peat samples were profiled using terminal restriction fragment length polymorphism analysis. Basal respiration (i.e., carbon mineralization in absence of substrate addition) was lowest and Cu and Ni concentrations and the degree of humification (assessed by the von Post scale) in surface peat samples were highest close to the smelter. Each peatland had a unique bacterial community when assessed using non-metric multidimensional scaling, whereas the fungal community was variable with no consistent patterns across the sites. Despite differences in microbial communities, substrate-induced respiration rates did not differ among peatlands as sites generally responded similarly to carbon substrate additions. Basal respiration rates were related to the humification status of the peat, which was potentially related to environmental degradation in the peatlands or surrounding terrestrial systems closer to the Sudbury smelters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anand, M., Ma, K., Okonski, A., Levin, S., & McCreath, D. (2003). Characterising biocomplexity and soil microbial dynamics along a smelter-damaged landscape gradient. The Science of the Total Environment, 311, 247–259.

    Article  CAS  Google Scholar 

  • Avis, P. G., Dickie, I., & Mueller, G. M. (2006). A “dirty” business: testing the limitations of terminal restriction fragment length polymorphism (TRFLP) analysis of soil fungi. Molecular Ecology, 15(3), 873–882.

    Article  CAS  Google Scholar 

  • Azarbad, H., Niklińska, M., van Gestel, C. A. M., van Straalen, N. M., Röling, W. F. M., & Laskowski, R. (2013). Microbial community structure and functioning along metal pollution gradients. Environmental Toxicology and Chemistry, 32, 1992–2002.

    Article  CAS  Google Scholar 

  • Bååth, E. (1989). Effects of heavy metals in soil on microbial processes and populations (a review). Water, Air, and Soil Pollution, 47, 335–379.

    Article  Google Scholar 

  • Bååth, E., Díaz-Raviña, M., & Bakken, L. R. (2005). Microbial biomass, community structure and metal tolerance of a naturally Pb-enriched forest soil. Microbial Ecology, 50, 496–505.

    Article  Google Scholar 

  • Barrett, S. (2014). Factors controlling peat chemistry and vegetation composition in Sudbury peatlands after 30 years of emission reductions. MSc. Thesis, Trent University, Peterborough, Ontario, Canada.

  • Basiliko, N., & Yavitt, J. B. (2001). Influence of Ni, Co, Fe, and Na additions on methane production in Sphagnum-dominated Northern American peatlands. Biogeochemistry, 52, 133–153.

    Article  CAS  Google Scholar 

  • Brandt, K. K., Frandsen, R. J. N., Holm, P. E., & Nybroe, O. (2010). Development of pollution-induced community tolerance is linked to structural and functional resilience of a soil bacterial community following a five-year field exposure to copper. Soil Biology and Biochemistry, 42, 748–757.

    Article  CAS  Google Scholar 

  • Bräuer, S. L., Cadillo-Quiroz, H., Yashiro, E., Yavitt, J. B., & Zinder, S. H. (2006). Isolation of a novel acidiphilic methanogen from an acidic peat bog. Nature, 442, 192–194. doi:10.1038/nature04810.

    Article  Google Scholar 

  • Bridgham, S. D., & Richardson, C. J. (1992). Mechanisms controlling soil respiration (CO2 and CH4) in southern peatlands. Soil Biology and Biogeochemistry, 24(11), 1089–1099.

    Article  CAS  Google Scholar 

  • Brūmelis, G., Lapina, L., Nikodemus, O., & Tabors, G. (2002). Use of the O horizon of forest soils in monitoring metal deposition in Latvia. Water, Air, and Soil Pollution, 135, 291–309.

    Article  Google Scholar 

  • Chodak, M., Gołębiewski, M., Morawska-Płoskonka, J., Kuduk, K., & Niklińska, M. (2013). Diversity of microorganisms from forest soils differently polluted with heavy metals. Applied Soil Ecology, 64, 7–14.

    Article  Google Scholar 

  • Cox, R. M., & Hutchinson, T. C. (1979). Metal co-tolerance in the grass Deschampsia caespitosa. Nature, 279, 231–233.

    Article  CAS  Google Scholar 

  • Cox, R. M., & Hutchinson, T. C. (1980). Multiple metal tolerances in the grass Deschampsia caespitosa from the Sudbury smelting area. New Phytologist, 84, 631–647.

    Article  CAS  Google Scholar 

  • Dudka, S., Ponce-Hernandez, R., & Hutchinson, T. C. (1995). Current level of total element concentrations in the surface layer of Sudbury’s soils. The Science of the Total Environment, 162(2–3), 161–171.

    Article  Google Scholar 

  • Edel-Hermann, V., Dreumont, C., Pérez-Piqueres, A., & Steinberg, C. (2004). Terminal restriction fragment length polymorphism analysis of ribosomal RNA genes to assess changes in fungal community structure in soils. FEMS Microbiology Ecology, 47, 397–404. doi:10.1016/S0168-6496(04)00002-9.

    Article  CAS  Google Scholar 

  • Environmental Conservation Task Force. (1981). Ecological land survey guidelines for environmental impact analysis. Ecological Land Classification Series No. 13. Federal Environmental Assessment and Review Process, Land Directorate. Ottawa, Ontario: Environment Canada and Federal Environmental Assessment Review Office.

    Google Scholar 

  • Feinstein, L. M., Sul, W. J., & Blackwood, C. B. (2009). Assessment of bias associated with incomplete extraction of microbial DNA from soil. Applied and Environmental Microbiology, 75(16), 5428–5433.

    Article  CAS  Google Scholar 

  • Freedman, B., & Hutchinson, T. C. (1980a). Pollutant inputs from the atmosphere and accumulations in soils and vegetation near a nickel-copper smelter at Sudbury, Ontario, Canada. Canadian Journal of Botany, 58, 108–132.

    CAS  Google Scholar 

  • Freedman, B., & Hutchinson, T. C. (1980b). Effects of smelter pollutants on forest leaf litter decomposition near a nickel-copper smelter at Sudbury, Ontario. Canadian Journal of Botany, 58, 1722–1736.

    Article  CAS  Google Scholar 

  • Gans, J., Wolinsky, M., & Dunbar, J. (2005). Reveal great bacterial diversity and high metal toxicity in soil. Science, 309, 1387–1390.

    Article  CAS  Google Scholar 

  • Gignac, L. D., & Beckett, P. J. (1986). The effect of smelting operations on peatlands near Sudbury, Ontario, Canada. Canadian Journal of Botany, 64, 1138–1147.

    Article  CAS  Google Scholar 

  • Gorham, E. (1991). Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecological Applications, 1(2), 182–195.

    Article  Google Scholar 

  • Gunn, J., Keller, W., Negusanti, J., Rotvin, R., Beckett, P., & Winterhalder, K. (1995). Ecosystem recovery after emission reductions: Sudbury, Ontario. Water, Air, and Soil Pollution, 85, 1783–1788.

    Article  CAS  Google Scholar 

  • Juckers, M., & Watmough, S. A. (2014). Impacts of simulated drought on pore-water chemistry of peatlands. Environmental Pollution, 184, 73–80.

    Article  CAS  Google Scholar 

  • Kim, S.-Y., Lee, S.-H., Freeman, C., Fenner, N., & Kang, H. (2008). Comparative analysis of soil microbial communities and their responses to the short-term drought in bog, fen, and riparian wetlands. Soil Biology and Biochemistry, 40, 2874–2880.

    Article  CAS  Google Scholar 

  • Lauber, C. L., Zhou, N., Gordon, J. I., Knight, R., & Fierer, N. (2010). Effect of storage conditions on the assessment of bacterial community structure in soil and human-associated samples. FEMS Microbiology Letters, 307(1), 80–86.

    Article  CAS  Google Scholar 

  • Levesque, M. P., & Mathur, S. P. (1979). A comparison of various means of measuring the degree of decomposition of virgin peat materials in the context of their relative biodegradability. Canadian Journal of Soil Science, 59(4), 397–400.

    Article  CAS  Google Scholar 

  • Lin, X., Green, S., Tfaily, M. M., Prakash, O., Konstantinidis, K. T., Corbett, J. E., Chanton, J. P., Cooper, W. T., & Kostka, J. E. (2012). Microbial community structure and activity linked to contrasting biogeochemical gradients in bog and fen environments of the Glacial Lake Agassiz Peatland. Applied and Environmental Microbiology, 78, 7023–7031.

    Article  CAS  Google Scholar 

  • Liu, Y., Zhou, T., Crowley, D., Li, L., Liu, D., Zheng, J., Yu, X., Pan, G., Hussain, Q., Zhang, X., & Zheng, J. (2012). Decline in topsoil microbial quotient, fungal abundance and C utilization efficiency of rice paddies under heavy metal pollution across South China. PLoS ONE, 7(6), e38858.

    Article  CAS  Google Scholar 

  • Lueders, T., & Friedrich, M. W. (2003). Evaluation of PCR amplification bias by terminal restriction fragment length polymorphism analysis of small-subunit rRNA and mcrA genes by using defined template mixtures of methanogenic pure cultures and soil DNA extracts. Applied and Environmental Microbiology, 69, 320–326.

    Article  CAS  Google Scholar 

  • Lukow, T., Dunfield, P. F., & Liesak, W. (2000). Use of the T-RFLP technique to assess spatial and temporal changes in the bacterial community structure within an agricultural soil planted with transgenic and non-transgenic potato plants. FEMS Microbiology Ecology, 32(3), 241–247.

    Article  CAS  Google Scholar 

  • McCall, J., Gunn, J., & Struik, H. (1995). Photo interpretive study of recovery of damaged lands near the metal smelters of Sudbury, Canada. Water, Air, and Soil Pollution, 85, 847–852.

    Article  CAS  Google Scholar 

  • Mertens, J., Springael, D., Troyer, I. D., Cheyns, K., Wattiau, P., & Smolders, E. (2006). Long-term exposure to elevated zinc concentrations induced structural changes and zinc tolerance of the nitrifying community in soil. Environmental Microbiology, 8(12), 2170–2178.

    Article  CAS  Google Scholar 

  • Niklińska, M., Chodak, M., & Laskowski, R. (2005). Characterization of the forest humus microbial community in a heavy metal polluted area. Soil Biology and Biochemistry, 37, 2185–2194.

    Article  Google Scholar 

  • Ocio, J. A., & Brookes, P. C. (1990). An evaluation of methods for measuring the microbial biomass in soils following recent additions of wheat straw and the characterization of the biomass that develops. Soil Biology and Biochemistry, 22(5), 685–694.

    Article  Google Scholar 

  • Oksanen, J. (2011). Multivariate analysis of ecological communities in R: vegan tutorial. R package version, 2–0, 1–43.

    Google Scholar 

  • Peltoniemi, K., Fritze, H., & Laiho, R. (2009). Response of fungal and actinobacterial communities to water-level drawdown in boreal peatland sites. Soil Biology and Biochemistry, 41, 1902–1914.

    Article  CAS  Google Scholar 

  • Pester, M., Knorr, K. H., Friedrich, M. W., Wagner, M., & Loy, A. (2012). Sulfate-reducing microorganisms in wetlands—fameless actors in carbon cycling and climate change. Frontiers in Microbiology, 3, 1–19.

    Article  Google Scholar 

  • Preston, M. D., Smemo, K. A., McLaughlin, J. W., & Basiliko, N. (2012). Peatland microbial communities and decomposition processes in the James Bay Lowlands, Canada. Frontiers in Microbiology, 3, 1–15.

    Article  Google Scholar 

  • Rousk, J., Brookes, P. C., & Bååth, E. (2009). Contrasting soil pH effects on fungal and bacterial growth suggest functional redundandcy in carbon mineralization. Applied and Environmental Microbiology, 75, 1589–1596.

    Article  CAS  Google Scholar 

  • Rousk, J., Bååth, E., Brookes, P. C., Lauber, C. L., Lozupone, C., Caporaso, J. G., Knight, R., & Fierer, N. (2010). Soil bacterial and fungal communities across a pH gradient in an arable soil. The ISME Journal, 4, 1340–1351.

    Article  Google Scholar 

  • Rydin, H. & Jeglum, J. (2006). The biology of peatlands. London, UK: Oxford University Press.

  • Sandaa, R., Torsvik, V., Enger, Ø., Daae, F. L., Castberg, T., & Hahn, D. (1999). Analysis of bacterial communities in heavy metal-contaminated soils at different levels of resolution. FEMS Microbiology Ecology, 30(3), 237–251.

    Article  CAS  Google Scholar 

  • Schipper, L. A., & Lee, W. G. (2004). Microbial biomass, respiration and diversity in ultramafic soils of West Dome, New Zealand. Plant and Soil, 262, 151–158.

    Article  CAS  Google Scholar 

  • Schütte, U. M. E., Abdo, Z., Bent, S. J., Shyu, C., Williams, C. J., Pierson, J. D., & Forney, L. J. (2008). Advances in the use of terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes to characterize microbial communities. Applied Microbiology and Biotechnology, 80, 365–380.

    Article  Google Scholar 

  • Soil Classification Working Group (1998). The Canadian System of Soil Classification. Ottawa, ON, Agriculture and Agri-Food Canada 187 Publication 1646

  • Szkokan-Emilson, E. J., Kielstra, B., Watmough, S. A., & Gunn, J. M. (2014a). Drought-induced release of metals from peatlands in watersheds recovering from historical metal and sulphur deposition. Biogeochemistry, 116, 131–145.

    Article  Google Scholar 

  • Szkokan-Emilson, E. J., Watmough, S. A., & Gunn, J. M. (2014b). Wetlands as long-term sources of metals to receiving waters in mining-impacted landscapes. Environmental Pollution, 192, 91–103.

    Article  CAS  Google Scholar 

  • Stefanowicz, A. M., Niklińska, M., & Laskowski, R. (2008). Metals affect soil bacterial and fungal functional diversity differently. Environmental Toxicology and Chemistry / SETAC, 27, 591–8.

    Article  CAS  Google Scholar 

  • Strickland, M. S., Osburn, E., Lauber, C., Fierer, N., & Bradford, M. A. (2009). Litter quality is in the eye of the beholder: initial decomposition rates as a function of inoculum characteristics. Functional Ecology, 23(3), 627–636.

    Article  Google Scholar 

  • Taylor, G. J., & Crowder, A. A. (1983). Accumulation of atmospherically deposited metals in wetland soils of Sudbury, Ontario. Water, Air, and Soil Pollution, 19, 29–42.

    Article  CAS  Google Scholar 

  • Ukonmaanaho, L., Nieminen, T. M., Rausch, N., & Shotyk, W. (2004). Heavy metal and arsenic profiles in ombrogenous peat cores from four differently loaded areas in Finland. Water, Air, and Soil Pollution, 159, 277–294.

    Article  Google Scholar 

  • Vance, E. D., Brookes, P. C., & Jenkinson, D. S. (1987). An extraction method for measuring soil microbial biomass C. Soil biology and Biogeochemistry, 19(6), 70–707.

    Google Scholar 

  • Von Post, L. (1937). The geographic survey of Irish bogs. The Irish Naturalist’s Journal, 6, 210–227.

    Google Scholar 

  • Whitby, L. M., Stokes, P. M., Hutchinson, T. C., & Myslki, G. (1976). Ecological consequence of acidic and heavy-metal discharges from the Sudbury smelters. Canadian Mineralogist, 14, 47–57.

    Google Scholar 

  • Winsborough, C., & Basiliko, N. (2010). Fungal and bacterial activity in Northern Peatlands. Geomicrobiology Journal, 27, 315–320.

    Article  CAS  Google Scholar 

  • Winterhalder, K. (1996). Environmental degradation and rehabilitation of the landscape around Sudbury, a major mining and smelting area. Environmental Reviews, 4(3), 185–224.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Sciences and Engineering Research Council of Canada (NSERC), Vale INCO, Xstrata and the City of Greater Sudbury for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaun A. Watmough.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 38 kb)

ESM 2

(DOC 76 kb)

ESM 3

(DOC 53 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luke, S., Preston, M.D., Basiliko, N. et al. Microbial Communities, Biomass, and Carbon Mineralization in Acidic, Nutrient-Poor Peatlands Impacted by Metal and Acid Deposition. Water Air Soil Pollut 226, 19 (2015). https://doi.org/10.1007/s11270-014-2265-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-2265-6

Keywords

Navigation