Skip to main content

Advertisement

Log in

Spatial and Temporal Migration of a Landfill Leachate Plume in Alluvium

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Leachate from unlined or leaky landfills can create groundwater contaminant plumes that last decades to centuries. Understanding the dynamics of leachate movement in space and time is essential for monitoring, planning and management, and assessment of risk to groundwater and surface-water resources. Over a 23.4-year period (1986–2010), the spatial extent of the Norman Landfill leachate plume increased at a rate of 7800 m2/year and expanded by 878 %, from an area of 20,800 m2 in 1986 to 203,400 m2 in 2010. A linear plume velocity of 40.2 m/year was calculated that compared favorably to a groundwater-seepage velocity of 55.2 m/year. Plume-scale hydraulic conductivity values representative of actual hydrogeological conditions in the alluvium ranged from 7.0 × 10−5 to 7.5 × 10−4 m/s, with a median of 2.0 × 10−4 m/s. Analyses of field-measured and calculated plume-scale hydraulic conductivity distributions indicate that the upper percentiles of field-measured values should be considered to assess rates of plume-scale migration, spreading, and biodegradation. A pattern of increasing Cl concentrations during dry periods and decreasing Cl concentrations during wet periods was observed in groundwater beneath the landfill. The opposite occurred in groundwater downgradient from the landfill; that is, Cl concentrations in groundwater downgradient from the landfill decreased during dry periods and increased during wet periods. This pattern of changing Cl concentrations in response to wet and dry periods indicates that the landfill retains or absorbs leachate during dry periods and produces lower concentrated leachate downgradient. During wet periods, the landfill receives more recharge which dilutes leachate in the landfill but increases leachate migration from the landfill and produces a more concentrated contaminant plume. This approach of quantifying plume expansion, migration, and concentration during variable hydrologic conditions provides increased understanding of plume behavior and migration potential and may be applied at less monitored landfill sites to evaluate potential risks of contamination to downgradient receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andrews, D. M., Lin, H., Zhu, Q., Jin, L., & Brantley, S. (2011). Hot spots and hot moments of dissolved organic carbon export and soil organic carbon storage in the shale hills catchment. Vadose Zone Journal, 10, 943–954.

    Article  CAS  Google Scholar 

  • Andrews, W. J., Masoner, J. R., & Cozzarelli, I. M. (2012). Emerging contaminants at a closed and an operating landfill in Oklahoma. Ground Water Monitoring & Remediation, 32, 120–130.

    Article  CAS  Google Scholar 

  • Arora, B., Mohanty, B. P., McGuire, J. T., & Cozzarelli, I. M. (2013). Temporal dynamics of biogeochemical processes at the Norman landfill site. Water Resources Research, 49, 6909–6926.

    Article  CAS  Google Scholar 

  • Báez-Cazull, S. B., McGuire, J. T., Cozzarelli, I. M., Raymond, A., & Welsh, L. (2007). Centimeter-scale characterization of biogeochemical gradients at a wetland-aquifer interface using capillary electrophoresis. Applied Geochemistry, 22, 2664–2683.

    Article  Google Scholar 

  • Barnes, K. K., Christenson, S. C., Kolpin, D. W., Focazio, M. J., Furlong, E. T., Zaugg, S. D., et al. (2004). Pharmaceuticals and other organic waste water contaminants within a leachate plume downgradient of a municipal landfill. Ground Water Monitoring and Remediation, 29, 119–126.

    Article  Google Scholar 

  • Becker, C. J. (2002). Hydrogeology and leachate plume delineation at a closed municipal landfill, Norman, Oklahoma. Oklahoma City: U.S. Geological Scientific Investigations Report 01-4168, 36.

    Google Scholar 

  • Bjerg, P. L., Tuxen, N., Reitzel, L. A., Albrechtsen, H.-J., & Kjeldsen, P. (2011). Natural attenuation processes in landfill leachate plumes at three Danish sites. Ground Water, 49, 688–705.

    Article  CAS  Google Scholar 

  • Bjerg, P. L., Albrechtsen, H.-J., Kjeldsen, P., Christensen, T. H., & Cozzarelli, I. M. (2014). The biogeochemistry of contaminant groundwater plumes arising from waste disposal facilities. In H. D. Holland & K. K. Turekian (Eds.), Treatise on geochemistry (2nd ed., pp. 573–605). Oxford: Elsevier.

    Chapter  Google Scholar 

  • Breit, G. N., Tuttle, M. L. W., Cozzarelli, I. M., Christenson, S. C., Jaeschke, J. B., Fey, D. L., et al. (2005). Results of the chemical and isotopic analyses of sediment and water from alluvium of the Canadian River near a closed municipal landfill, Norman, Oklahoma. Reston: U.S. Geological Survey Open-file Report 2005-1091, 43.

    Google Scholar 

  • Buszka, P. M., Yeskis, D. J., Kolpin, D. W., Furlong, E. T., Zaugg, S. D., & Meyer, M. T. (2009). Waste-indicator and pharmaceutical compounds in landfill-leachate-affected ground water near Elkhart, Indiana, 2000–2002. Bulletin of Environmental Contamination and Toxicology, 82, 653–659.

    Article  CAS  Google Scholar 

  • Christensen, T. H., Kjeldsen, P., Albrechtsen, H.-J., Heron, G., Nielsen, P. H., Bjerg, P. L., et al. (1994). Attenuation of landfill leachate pollutants in aquifers. Critical Review in Environmental Science and Technology, 24(2), 119–202.

    Article  CAS  Google Scholar 

  • Chu, L. M., Cheung, K. C., & Wong, M. H. (1994). Variations in the chemical properties of landfill leachate. Environmental Management, 18, 105–117.

    Article  Google Scholar 

  • Collins, K.L. (2001). Permeability pathways in the Canadian River alluvium adjacent to the Norman Landfill, Norman, Oklahoma: Stillwater, Okla., Oklahoma State University, unpublished Masters Thesis, 206.

  • Cozzarelli, I. M., Böhlke, J. K., Masoner, J. R., Breit, G. N., Lorah, M. M., Tuttle, M. L. W., et al. (2011). Biogeochemical evolution of a landfill leachate plume, Norman, Oklahoma. Ground Water, 49, 663–687.

    Article  CAS  Google Scholar 

  • Curtis, J. A., & Whitney, J. W. (2003). Geomorphic and hydrologic assessment of erosion hazards at the Norman municipal landfill, Canadian River floodplain, central Oklahoma. Environmental & Engineering Geoscience, 9, 241–252.

    Article  Google Scholar 

  • Dixon, K.K. (1992). Oklahoma State Department of Health: preliminary assessment (PA) report for the old Norman landfill: submitted to USEPA Region VI, February 27, 1992: Oklahoma State Department of Health and Solid Waste Management Service Technical Programs Branch, Superfund Section PA/SSI staff, 23, plus attachments.

  • Eganhouse, R. P., Cozzarelli, I. M., Scholl, M. A., & Matthews, L. L. (2001). Natural attenuation of volatile organic compounds (VOCs) in the leachate plume of a municipal landfill: using alkylbenzenes as a process probe. Ground Water, 39, 192–202.

    Article  CAS  Google Scholar 

  • Freyberg, D. L. (1986). A natural gradient experiment on solute transport in a sand aquifer: 2. Spatial moments and the advection and dispersion of nonreactive tracers. Water Resources Research, 13, 2031–2046.

    Article  Google Scholar 

  • Harris, G. R., Garlock, C., LeSeur, L., Mesinger, S., & Wexler, R. (1982). Groundwater from industrial waste disposal: a case study. Journal of Environment and Health, 44, 287–295.

    CAS  Google Scholar 

  • Jaeschke, J. B., Scholl, M. A., Cozzarelli, I. M., Masoner, J. R., Christenson, S. C., & Qi, H. (2011). Stable-isotope ratios of hydrogen and oxygen in precipitation at Norman, Oklahoma, 1996–2008. Oklahoma City: U.S. Geological Scientific Investigations Report 2011-5262, 12.

    Google Scholar 

  • Kjeldsen, P., Bjerg, P. L., Pedersen, J. K., Rügge, K., & Christensen, T. H. (1998). Characterization of an old municipal landfill (Grindsted, Denmark) as a ground water pollution source: landfill hydrology and leachate migration. Waste Management and Research, 16, 14–22.

    Article  CAS  Google Scholar 

  • Lorah, M. M., Cozzarelli, I. M., & Böhlke, J. K. (2009). Biogeochemistry at a wetland sediment-alluvial aquifer interface in a landfill leachate plume. Journal of Contaminant Hydrology, 105, 99–117.

    Article  CAS  Google Scholar 

  • Masoner, J. R., Stannard, D. I., & Christenson, S. C. (2008). Differences in evaporation between a floating pan and class a pan on land. Journal of the American Water Resources Association, 44, 552–561.

    Article  Google Scholar 

  • Masoner, J. R., Kolpin, D. W., Furlong, E. T., Cozzarelli, I. M., Gray, J. L., & Schwab, E. A. (2014). Contaminants of emerging concern in fresh leachate from landfills in the conterminous United States. Environmental Science: Processes & Impacts, 16, 2335–2354.

    CAS  Google Scholar 

  • Mendoza-Sanchez, I., Phanikumar, M. S., Niu, J., Masoner, J. R., Cozzarelli, I. M., & McGuire, J. T. (2013). Quantifying wetland-aquifer interactions in a humid subtropical climate region: an integrated approach. Journal of Hydrology, 498, 237–253.

    Article  CAS  Google Scholar 

  • Oklahoma Climatological Survey. (2011). Daily time series using cooperative observer (COOP) data: accessed June 8, 2011, at http://climate.ok.gov/index.php/climate/category/my_county_or_town.

  • Pearson, K. (1900). On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. Philosophical Magazine Series, 5(50), 157–175.

    Article  Google Scholar 

  • Schlottmann, J. L. (2001). Water chemistry near the closed Norman Landfill, Cleveland County, Oklahoma, 1995. Oklahoma City: U.S. Geological Survey Scientific Investigations Report 00-4238, 44.

    Google Scholar 

  • Scholl, M. A. (2000). Effects of heterogeneity in aquifer permeability and biomass on biodegradation rate calculations—results from numerical simulations. Ground Water, 38, 702–712.

    Article  CAS  Google Scholar 

  • Scholl, M. A., & Christenson, S. C. (1998). Spatial variation in hydraulic conductivity determined by slug tests in the Canadian River alluvium near the Norman Landfill, Norman, Oklahoma. Oklahoma City: U.S. Geological Survey Water-Resources Investigations Report 97-4292, 28.

    Google Scholar 

  • Scholl, M. A., Christenson, S. C., Cozzarelli, I. M., Ferree, D. M., & Jaeschke, J. (2004). Recharge processes in an alluvial aquifer riparian zone, Norman Landfill, Norman, Oklahoma, 1998–2000. Oklahoma City: U.S. Geological Survey Scientific Investigations Report 2004-5238, 54.

    Google Scholar 

  • Singha, K., & Gorelick, S. M. (2005). Saline tracer visualized with three-dimensional electrical resistivity tomography: field-scale spatial moment analysis. Water Resources Research, 41, W05023. doi:10.1029/2004/WR003460.

    Article  Google Scholar 

  • Statom, R. A., Thyne, G. D., & McCray, J. E. (2004). Temporal changes in leachate chemistry of a municipal solid waste landfill cell in Florida, USA. Environmental Geology, 45, 982–991.

    Article  CAS  Google Scholar 

  • Sudicky, E. A., Illman, W. A., Goltz, I. K., Adams, J. J., & McLaren, R. G. (2010). Heterogeneity in hydraulic conductivity and its role on the macroscale transport of a solute plume: from measurements to a practical application of stochastic flow and transport theory. Water Resources Research, 46, W01508. doi:10.1029/2008WR007558.

    Article  Google Scholar 

  • Suflita, J. M., Gerba, C. P., Ham, R. K., Palmisano, A. C., Rathje, W. L., & Robinson, J. A. (1992). The world’s largest landfill. Environmental Science & Technology, 26, 1486–1495.

    Article  CAS  Google Scholar 

  • Thomsen, N. I., Milosevic, N., & Bjerg, P. L. (2012). Application of a mass balance method at an old landfill to assess the impact on surrounding water resources. Waste Management, 32, 2406–2417.

    Article  CAS  Google Scholar 

  • U.S. Environmental Protection Agency (USEPA). (2010). Municipal solid waste in the United States: 2009 facts and figures. USEPA Office of Solid Waste EPA530-R-10-0126. www.epa.gov/wastes/nonhaz/municipal/pubs/msw2009rpt.pdf (accessed January 12, 2013).

  • Van Breukelen, B. M., & Griffioen, J. (2004). Biogeochemical processes at the fringe of a landfill leachate pollution plume: potential for dissolved organic carbon, Fe(II), Mn(II), NH4, and CH4 oxidation. Journal of Contaminant Hydrology, 73, 181–205.

    Article  Google Scholar 

  • Vidon, P., Allan, C., Burns, D., Duval, T. P., Gurwick, N., Inamdar, S., et al. (2010). Hot spots and hot moments in riparian zones: potential for improved water quality management. Journal of the American Water Resources Association, 46, 278–298.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by the USGS Toxic Substances Hydrology Program and National Research Program. Appreciation is extended to Kevin A. Smith and Jeanne B. Jaeschke of the USGS for their assistance with well installation, sampling, and data analysis. The authors also thank Dr. Stanley T. Paxton, Dr. William Andrews, and Jerrod Smith for their reviews of this paper. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason R. Masoner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masoner, J.R., Cozzarelli, I.M. Spatial and Temporal Migration of a Landfill Leachate Plume in Alluvium. Water Air Soil Pollut 226, 18 (2015). https://doi.org/10.1007/s11270-014-2261-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-2261-x

Keywords

Navigation