Skip to main content

Advertisement

Log in

Aluminum Alginate–Montmorillonite Composite Beads for Defluoridation of Water

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

A novel alginate–montmorillonite biopolymer-clay composite bead formulation for water defluoridation was developed in this study. Montmorillonite was dispersed alginate solution, and the mixture was cross-linked in an aqueous solution of aluminum(III). The resulting cross-linked beads were characterized using FTIR, SEM, and mechanical measurements. In order to reveal the defluoridation capacity of the beads, batch adsorption experiments were carried out. Optimum conditions and effect of competing ions were investigated. Experimental data were modeled using several isothermal, kinetic, and thermodynamic models. Maximum Langmuir adsorption capacity was reached as 31.0 mg g−1 at 25 °C. It is also found that the adsorption is physical in nature and follows the Elovich kinetic model, and the fluoride removal efficiency is not affected by the presence of most competing anions. The results show that aluminum alginate–montmorillonite composite beads can be used as effective and natural sorbents for fluoride removal from water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Bajpai, S. K., & Sharma, S. (2004). Investigation of swelling/degradation behaviour of alginate beads crosslinked with Ca2+ and Ba2+ ions. Reactive and Functional Polymers, 59, 129–140.

    Article  CAS  Google Scholar 

  • Bhatnagar, A., Kumar, E., & Sillanpää, M. (2011). Fluoride removal from water by adsorption—a review. Chemical Engineering Journal, 171(3), 811–840.

    Article  CAS  Google Scholar 

  • Bia, G., De Pauli, C. P., & Borgnino, L. (2012). The role of Fe(III) modified montmorillonite on fluoride mobility: adsorption experiments and competition with phosphate. Journal of Environmental Management, 100, 1–9.

    Article  CAS  Google Scholar 

  • Biswas, K., Gupta, K., Goswami, A., & Ghosh, U. C. (2010). Fluoride removal efficiency from aqueous solution by synthetic iron(III)–aluminum(III)–chromium(III) ternary mixed oxide. Desalination, 255(1–3), 44–51.

    Article  CAS  Google Scholar 

  • Chan, E. S., Lim, T. K., Voo, W. P., Pogaku, R., Tey, B. T., & Zhang, Z. (2011). Effect of formulation of alginate beads on their mechanical behavior and stiffness. Particuology, 9(3), 228–234.

    Article  CAS  Google Scholar 

  • Chien, S. H., & Clayton, W. R. (1980). Application of Elovich equation to the kinetics of phosphate release and sorption in soils. Soil Science Society of America Journal, 44(2), 265–268.

    Article  CAS  Google Scholar 

  • Dubinin, M. M. (1960). The potential theory of adsorption of gases and vapors for adsorbents with energetically non-uniform surface. Chemical Reviews, 60(2), 235–241.

    Article  CAS  Google Scholar 

  • Dubinin, M. M., & Radushkevich, L. V. (1947). The equation of the characteristic curve of activated charcoal. Proceedings of the USSR Academy of Sciences, Physical Chemistry Section, 55, 331–337.

    Google Scholar 

  • Evingür, G. A., Kaygusuz, H., Erim, F. B., & Pekcan, Ö. (2014). Effect of calcium Ion concentration on small molecule desorption from alginate beads. Journal of Macromolecular Science, Part B: Physics, 53(7), 1157–1167.

    Article  Google Scholar 

  • Freundlich, H. M. F. (1906). Über die adsorption in Lösungen. Zeitschrift für Physikalische Chemie, 57(A), 385–470.

    CAS  Google Scholar 

  • Hamadi, N. K., Chen, X. D., Farid, M. M., & Lu, M. G. Q. (2001). Adsorption kinetics for the removal of chromium(VI) from aqueous solution by adsorbents derived from used tyres and sawdust. Chemical Engineering Journal, 84(2), 95–105.

    Article  CAS  Google Scholar 

  • Hena, S. (2010). Removal of chromium hexavalent ion from aqueous solutions using biopolymer chitosan coated with poly 3-methyl thiophene polymer. Journal of Hazardous Materials, 181(1–3), 474–479.

    Article  CAS  Google Scholar 

  • Hertz, H. (1882). Über die Berührung fester elastischer Körper. Zeitschrift für Reine Angewandte Mathematik, 92, 156–171.

    Google Scholar 

  • Huo, Y., Ding, W., Huang, X., Xu, J., & Zhao, M. (2011). Fluoride removal by lanthanum alginate bead: adsorbent characterization and adsorption mechanism. Chinese Journal of Chemical Engineering, 19(3), 365–370.

    Article  CAS  Google Scholar 

  • Karthikeyan, G., Pius, A., & Alagumuthu, G. (2005). Fluoride adsorption studies of montmorillonite clay. Indian Journal of Chemical Technology, 12, 263–272.

    CAS  Google Scholar 

  • Kaygusuz, H., & Erim, F. B. (2013). Alginate/BSA/montmorillonite composites with enhanced protein entrapment and controlled release efficiency. Reactive and Functional Polymers, 73(11), 1420–1425.

    Article  CAS  Google Scholar 

  • Kilislioglu, A., & Bilgin, B. (2003). Thermodynamic and kinetic investigations of uranium adsorption on amberlite IR-118H resin. Applied Radiation and Isotopes, 58(2), 155–160.

    Article  CAS  Google Scholar 

  • Lagergren, S. (1898). Zur theorie der sogenannten adsorption gelöster stoffe. Kungliga Svenska Vetenskapsakademiens Handlingar, 24, 1–39.

    Google Scholar 

  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40(9), 1361–1402.

    Article  CAS  Google Scholar 

  • Mohapatra, M., Anand, S., Mishra, B. K., Giles, D. E., & Singh, P. (2009). Review of fluoride removal from drinking water. Journal of Environmental Management, 91(1), 67–77.

    Article  CAS  Google Scholar 

  • Ouwerx, C., Velings, N., Mestdagh, M. M., & Axelos, M. A. V. (1998). Physico-chemical properties and rheology of alginate gel beads formed with various divalent cations. Polymer Gels and Networks, 6, 393–408.

    Article  CAS  Google Scholar 

  • Rocher, V., Siaugue, J. M., Cabuli, V., & Bee, A. (2008). Removal of organic dyes by magnetic alginate beads. Water Research, 42(4–5), 1290–1298.

    Article  CAS  Google Scholar 

  • Temkin, M. J., & Pyzhev, V. (1940). Recent modifications to Langmuir isotherms. Acta Physicochimica URSS, 12, 217–222.

    Google Scholar 

  • Teutli-Sequeira, A., Solache-Ríos, M., & Balderas-Hernández, P. (2012). Modification effects of hematite with aluminum hydroxide on the removal of fluoride ions from water. Water, Air, & Soil Pollution, 223(1), 319–327.

    Article  CAS  Google Scholar 

  • Tseng, R.-L., & Wu, F.-C. (2008). Inferring the favorable adsorption level and the concurrent multi-stage process with the Freundlich constant. Journal of Hazardous Materials, 155, 277–287.

    Article  CAS  Google Scholar 

  • Uzaşçı, S., Tezcan, F., & Erim, F. B. (2013). Removal of hexavalent chromium from aqueous solution by barium ion cross-linked alginate beads. International Journal of Environmental Science and Technology. doi:10.1007/s13762-013-0377-y.

    Google Scholar 

  • Weber, W. J., & Morris, J. C. (1963). Kinetics of adsorption on carbon from solution. Journal of the Sanitary Engineering Division, 89(2), 31–60.

    Google Scholar 

  • World Health Organization (2006). Fluoride in drinking-water Eds. Fawell, J., Bailey, K., Chilton, J., Dahi, E., Fewtrell, L., Magara, Y. IWA Publishing, London

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hakan Kaygusuz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaygusuz, H., Çoşkunırmak, M.H., Kahya, N. et al. Aluminum Alginate–Montmorillonite Composite Beads for Defluoridation of Water. Water Air Soil Pollut 226, 2257 (2015). https://doi.org/10.1007/s11270-014-2257-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-2257-6

Keywords

Profiles

  1. Nilay Kahya