Skip to main content
Log in

Homogeneous Liquid–Liquid Microextraction via Flotation Assistance with Thiol Group Chelating Reagents for Rapid and Efficient Determination of Cadmium(II) and Copper(II) Ions in Water Samples

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In the present study, facile and competent homogeneous liquid–liquid microextraction via flotation assistance (HLLME-FA) method combined with flow injection flame atomic absorption spectrometry (FI-FAAS) was proposed for simultaneous separation/preconcentration and determination of trace amounts of cadmium and copper in water samples. The efficient 2-(3,4-dihydroxyphenyl)-1,3-dithiolane (DHPDTO) with thiol groups was used as chelating reagent. The predominant parameters influencing the HLLME-FA, such as solution pH, concentration of DHPDTO, extraction and homogeneous solvent types and volumes, ionic strength, and extraction time were studied. Applying all the optimum conditions in the process, the detection limits of 0.008 and 0.01 μg L−1, linear ranges of 0.08–40 and 0.1–45 μg L−1, and the precision (RSD%, n = 7) of 3.4 and 3.9 % were obtained, respectively, for cadmium and copper. The proposed procedure showed satisfactory results for analysis of tap water, river water, well water, and seawater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anthemidis, A. N., & Adam, I. S. I. (2009). Development of on-line single-drop micro-extraction sequential injection system for electrothermal atomic absorption spectrometric determination of trace metals. Analytica Chimica Acta, 632, 216–220.

    Article  CAS  Google Scholar 

  • Chen, J., & Teo, K. C. (2001). Determination of cadmium, copper, lead and zinc in water samples by flame atomic absorption spectrometry after cloud point extraction. Analytica Chimica Acta, 450, 215–222.

    Article  CAS  Google Scholar 

  • Dadfarnia, S., Haji Shabani, A. M., & Kamranzadeh, E. (2009). Separation/preconcentration and determination of cadmium ions by solidification of floating organic drop microextraction and FI-AAS. Talanta, 79, 1061–1065.

    Article  CAS  Google Scholar 

  • Davis, A. C., Wu, P., Zhang, X., Hou, X., & Jones, B. T. (2006). Determination of cadmium in biological samples. Applied Spectroscopy Reviews, 41, 35–75.

    Article  CAS  Google Scholar 

  • Es’haghi, Z., Khalili, M., Khazaeifar, A., & Rounaghi, G. H. (2011). Simultaneous extraction and determination of lead, cadmium and copper in rice samples by a new pre-concentration technique: hollow fiber solid phase microextraction combined with differential pulse anodic stripping voltammetry. Electrochimica Acta, 56, 3139–3146.

    Article  Google Scholar 

  • Farajzadeh, M. A., Bahram, M., Mehr, B. G., & Jönsson, J. Å. (2008). Optimization of dispersive liquid–liquid microextraction of copper (II) by atomic absorption spectrometry as its oxinate chelate: application to determination of copper in different water samples. Talanta, 75, 832–840.

    Article  CAS  Google Scholar 

  • Farajzadeh, M. A., Bahram, M., Zorita, S., & Mehr, B. G. (2009). Optimization and application of homogeneous liquid–liquid extraction in preconcentration of copper (II) in a ternary solvent system. Journal of Hazardous Materials, 161, 1535–1543.

    Article  CAS  Google Scholar 

  • Flemming, C. A., & Trevors, J. T. (1989). Copper toxicity and chemistry in the environment: a review. Water, Air, and Soil Pollution, 44, 143–158.

    Article  CAS  Google Scholar 

  • Gaetke, L. M., & Chow, C. K. (2003). Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology, 189, 147–163.

    Article  CAS  Google Scholar 

  • Haddadi, H., Shirani, M., Semnani, A., Rezaee, M., Mashayekhi, H., & Hosseinian, A. (2014). Simultaneous determination of deltamethrin and permethrin in water samples using homogeneous liquid–liquid microextraction via flotation assistance and GC-FID. Chromatographia, 77, 715–721.

    Article  CAS  Google Scholar 

  • Hosseini, M. H., Asaadi, P., Rezaee, M., Rezaei, M., Pourjavid, M., Arabieh, M., & Abhari, A. (2013a). Homogeneous liquid–liquid microextraction Via flotation assistance (HLLME-FA) method for the pretreatment of organochlorine pesticides in aqueous samples and determination by GC–MS. Chromatographia, 76, 1779–1784.

    Article  Google Scholar 

  • Hosseini, M. H., Rezaee, M., Akbarian, S., Mizani, F., Pourjavid, M. R., & Arabieh, M. (2013b). Homogeneous liquid–liquid microextraction via flotation assistance for rapid and efficient determination of polycyclic aromatic hydrocarbons in water samples. Analytica Chimica Acta, 762, 54–60.

    Article  CAS  Google Scholar 

  • Hosseini, M. H., Rezaee, M., Mashayekhi, H. A., Akbarian, S., Mizani, F., & Pourjavid, M. R. (2012). Determination of polycyclic aromatic hydrocarbons in soil samples using flotation-assisted homogeneous liquid-liquid microextraction. Journal of Chromatography. A, 1265, 52–56.

    Article  CAS  Google Scholar 

  • Li, S., Cai, S., Hu, W., Chen, H., & Liu, H. (2009). Ionic liquid-based ultrasound-assisted dispersive liquid–liquid microextraction combined with electrothermal atomic absorption spectrometry for a sensitive determination of cadmium in water samples. Spectrochimica Acta Part B: Atomic Spectroscopy, 64, 666–671.

    Article  Google Scholar 

  • Lin, T.-W., & Huang, S.-D. (2001). Direct and simultaneous determination of copper, chromium, aluminum, and manganese in urine with a multielement graphite furnace atomic absorption spectrometer. Analytical Chemistry, 73, 4319–4325.

    Article  CAS  Google Scholar 

  • Liu, C.-C., Kuang-Wang, M., & Li, Y.-S. (2005). Removal of nickel from aqueous solution using wine processing waste sludge. Industrial and Engineering Chemistry Research, 44, 1438–1445.

    Article  CAS  Google Scholar 

  • Mazloum-Ardakani, M., Beitollahi, H., Amini, M. K., Mirkhalaf, F., Mirjalili, B.-F., & Akbari, A. (2011). Application of 2-(3,4-dihydroxyphenyl)-1,3-dithialone self-assembled monolayer on gold electrode as a nanosensor for electrocatalytic determination of dopamine and uric acid. Analyst, 136, 1965–1970.

    Article  CAS  Google Scholar 

  • Meena, A. K., Mishra, G. K., Rai, P. K., Rajagopal, C., & Nagar, P. N. (2005). Removal of heavy metal ions from aqueous solutions using carbon aerogel as an adsorbent. Journal of Hazardous Materials, 122, 161–170.

    Article  CAS  Google Scholar 

  • Rezaee, M., Assadi, Y., Milani Hosseini, M.-R., Aghaee, E., Ahmadi, F., & Berijani, S. (2006). Determination of organic compounds in water using dispersive liquid–liquid microextraction. Journal of Chromatography. A, 1116, 1–9.

    Article  CAS  Google Scholar 

  • Şahin, Ç. A., & Tokgöz, İ. (2010). A novel solidified floating organic drop microextraction method for preconcentration and determination of copper ions by flow injection flame atomic absorption spectrometry. Analytica Chimica Acta, 667, 83–87.

    Article  Google Scholar 

  • Tavakoli, L., Yamini, Y., Ebrahimzadeh, H., & Shariati, S. (2008). Homogeneous liquid–liquid extraction for preconcentration of polycyclic aromatic hydrocarbons using a water/methanol/chloroform ternary component system. Journal of Chromatography. A, 1196–1197, 133–138.

    Article  Google Scholar 

  • Wei, G.-T., Yang, Z., & Chen, C.-J. (2003). Room temperature ionic liquid as a novel medium for liquid/liquid extraction of metal ions. Analytica Chimica Acta, 488, 183–192.

    Article  CAS  Google Scholar 

  • Wen, X., Wu, P., Xu, K., Wang, J., & Hou, X. (2009). On-line precipitation–dissolution in knotted reactor for thermospray flame furnace AAS for determination of ultratrace cadmium. Microchemical Journal, 91, 193–196.

    Article  CAS  Google Scholar 

  • Wen, X., Yang, Q., Yan, Z., & Deng, Q. (2011). Determination of cadmium and copper in water and food samples by dispersive liquid–liquid microextraction combined with UV–vis spectrophotometry. Microchemical Journal, 97, 249–254.

    Article  CAS  Google Scholar 

  • Xie, F., Lin, X., Wu, X., & Xie, Z. (2008). Solid phase extraction of lead (II), copper (II), cadmium (II) and nickel (II) using gallic acid-modified silica gel prior to determination by flame atomic absorption spectrometry. Talanta, 74, 836–843.

    Article  CAS  Google Scholar 

  • Zeini Jahromi, E., Bidari, A., Assadi, Y., Milani Hosseini, M. R., & Jamali, M. R. (2007). Dispersive liquid–liquid microextraction combined with graphite furnace atomic absorption spectrometry: Ultra trace determination of cadmium in water samples. Analytica Chimica Acta, 585, 305–311.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support for this work by the Research Council of University of Jiroft is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahboube Shirani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baroumand, N., Akbari, A., Shirani, M. et al. Homogeneous Liquid–Liquid Microextraction via Flotation Assistance with Thiol Group Chelating Reagents for Rapid and Efficient Determination of Cadmium(II) and Copper(II) Ions in Water Samples. Water Air Soil Pollut 226, 2254 (2015). https://doi.org/10.1007/s11270-014-2254-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-2254-9

Keywords

Navigation