Skip to main content

Impact of Floods and Their Frequency on Content and Distribution of Risk Elements in Alluvial Soils


The aim of this study was to compare the pollution levels of risk elements in flooded and non-flooded alluvial soils as a function of inundation frequency and river distance, depth of soil horizon, and pollution origin. Totally, 43 soil profiles of flooded and non-flooded soils were sampled in two layers (topsoil and subsoil). The total contents of As, Cd, Co, Cr, Cu, Mo, Ni, Pb, V, and Zn were measured and grouped according to the assumed geogenic or anthropogenic origin. Flooded soils were classified according to inundation stage/river distance. Concerning the depth gradient, it can be concluded that the content of anthropogenic risk elements decreased with the depth, while geogenic risk elements revealed no trend. The distance from the river had no influence on the distribution of anthropogenic risk elements in soil. On the contrary, geogenic risk elements showed increasing concentrations with increasing distance. These results indicate that frequency of floods has no influence on the risk elements distribution in soil. The process of sedimentation seems to be the main factor influencing the level of pollution, it differs between groups of anthropogenic and geogenic risk elements. The result of this countrywide study shows higher levels of soil contamination in flooded areas even without significant point sources of pollution, than in non-flooded areas in standard agricultural conditions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  • Alloway, B. J. (1990). Heavy metals in soils. (p. 339). Glasgow and London: Blackie.

    Google Scholar 

  • Bábek, O., Hilscherová, K., Nehyba, S., Zeman, J., Famera, M., Francu, J., … Klánová, J. (2008). Contamination history of suspended river sediments accumulated in oxbow lakes over the last 25 years. Journal of Soils and Sediments, 8(3), 165–176. doi:10.1007/s11368-008-0002-8

  • Baborowski, M., Büttner, O., Morgenstern, P., Krüger, F., Lobe, I., Rupp, H., & Tümpling, W. V. (2007). Spatial and temporal variability of sediment deposition on artificial-lawn traps in a floodplain of the River Elbe. Environmental Pollution, 148(3), 770–778. doi:10.1016/j.envpol.2007.01.032.

    Article  CAS  Google Scholar 

  • Barth, J. A. C., Grathwohl, P., & Jones, K. C. (2007). Introduction to AquaTerra special issue “AquaTerra: pollutant behavior in the soil, sediment, ground, and surface water system.”. Environmental Pollution, 148(3), 693–694. doi:10.1016/j.envpol.2007.01.043.

    Article  CAS  Google Scholar 

  • BBodSchG (1999). Federal soil protection act. (p. 502). In: Federal Law Gazette I (ed) Federal Republic of Germany - German Bundestag, with the consent of the German Bundesrat.

  • Bednarova, Z., Kuta, J., Kohut, L., Machat, J., Klanova, J., Holoubek, I., … Hilscherova, K. (2013). Spatial patterns and temporal changes of heavy metal distributions in river sediments in a region with multiple pollution sources. Journal of Soils and Sediments, 13(7), 1257–1269. doi:10.1007/s11368-013-0706-2

  • Beneš, S. (1993). Contents and balances of elements on environmental compartments. Praha: Ministry of Agriculture of the Czech Republic.

    Google Scholar 

  • Bláha, L., Hilscherová, K., Cáp, T., Klánová, J., Machát, J., Zeman, J., & Holoubek, I. (2010). Kinetic bacterial bioluminescence assay for contact sediment toxicity testing: relationships with the matrix composition and contamination. Environmental Toxicology and Chemistry, 29(3), 507–514. doi:10.1002/etc.81.

    Article  Google Scholar 

  • Borůvka, L., Vacek, O., & Jehlička, J. (2005). Principal component analysis as a tool to indicate the origin of potentially toxic elements in soils. Geoderma, 128(3–4), 289–300. doi:10.1016/j.geoderma.2005.04.010.

    Article  Google Scholar 

  • Desaules, A. (2012). Critical evaluation of soil contamination assessment methods for trace metals. The Science of the Total Environment, 426, 120–131. doi:10.1016/j.scitotenv.2012.03.035.

    Article  CAS  Google Scholar 

  • Du Laing, G., Rinklebe, J., Vandecasteele, B., Meers, E., & Tack, F. M. G. (2009). Trace metal behaviour in estuarine and riverine floodplain soils and sediments: a review. Science of the Total Environment, 407(13), 3972–3985. doi:10.1016/j.scitotenv.2008.07.025.

    Article  CAS  Google Scholar 

  • Du Laing, G., Vandecasteele, B., De Grauwe, P., Moors, W., Lesage, E., Meers, E., … Verloo, M. G. (2007). Factors affecting metal concentrations in the upper sediment layer of intertidal reedbeds along the river Scheldt. Journal of environmental monitoring: JEM, 9(5), 449–455. doi:10.1039/b618772b

  • Dz. U. 02.165.1359 (2002) Rozporzadzenie Ministra Srodowiska z dnia 9 wrzesnia 2002 r; w sprawie standardów jakosci gleby oraz standardów jakości ziemi (in Polish).

  • Fabietti, G., Biasioli, M., Barberis, R., & Ajmone-Marsan, F. (2009). Soil contamination by organic and inorganic pollutants at the regional scale: the case of Piedmont, Italy. Journal of Soils and Sediments, 10(2), 290–300. doi:10.1007/s11368-009-0114-9.

    Article  Google Scholar 

  • Förstner, U. (2004). Sediment dynamics and pollutant mobility in rivers: an interdisciplinary approach. Lakes & Reservoirs: Research and Management, 9, 25–40.

    Article  Google Scholar 

  • Gawlik, B., & Bidoglio, G. (2006). Background values in European soils and sewage sludges; PART III Conclusions, comments and recommendations. (B. M. Gawlik & G. Bidoglio, Eds.) (PART III C.). Luxembourg.

  • Heise, S., & Förstner, U. (2007). Risk assessment of contaminated sediments in river basins—theoretical considerations and pragmatic approach. Journal of Environmental Monitoring : JEM, 9(9), 943–952. doi:10.1039/b704071g.

    Article  CAS  Google Scholar 

  • Hilscherová, K., Dušek, L., Kubík, V., Čupr, P., Hofman, J., Klánová, J., & Holoubek, I. (2007). Redistribution of organic pollutants in river sediments and alluvial soils related to major floods. Journal of Soils and Sediments, 7(3), 167–177.

    Article  Google Scholar 

  • Hilscherová, K., Dušek, L., Šídlová, T., Jálová, V., Čupr, P., Giesy, J. P., … Holoubek, I. (2010). Seasonally and regionally determined indication potential of bioassays in contaminated river sediments. Environmental toxicology and chemistry / SETAC, 29(3), 522–34. doi:10.1002/etc.83

  • IUSS Working Group WRB (2007) World Reference Base for Soil Resources 2006, first update 2007. World Soil Resources Reports No. 103. FAO, Rome.

  • Jones, A., Panagos, P., Barcelo, S., Bouraoui, F., Bosco, C., O. Dewitte, O., … Yigini, Y. (2012). State of Soil in Europe, A contribution of the JRC to the European Environment Agency’s Environment State and Outlook Report–SOER 2010. Luxembourg. doi:10.2788/77361

  • Kabata-Pendias, A. (2011). Trace elements in soils and plants. Boca Raton: CRC Press.

    Google Scholar 

  • Kibblewhite, M. G., Jones, R. J. A., Montanarella, L., Baritz, R., Huber, S., Arrouays, D., … Stephens, M. (2008). Environmental Assessment of Soil for Monitoring Volume VI : Soil Monitoring System for Europe. EUR 23490 EN/6. (Vol. VI, p. 72). Luxembourg: Office for the Official Publications of the European Communities. doi:10.2788/95007

  • Kruger, F., & Grongroft, A. (2003). The difficult assessment of heavy metal contamination of soils and plants in Elbe River floodplains. Acta Hydrochimica et Hydrobiologica, 31(45), 436–443. doi:10.1002/aheh.200300495.

    Article  Google Scholar 

  • Kruger, F., Meissner, R., Grongroft, A., & Grunewald, K. (2005). Flood induced heavy metal and arsenic contamination of Elbe River floodplain soils. Acta Hydrochimica et Hydrobiologica, 33(5), 455–465. doi:10.1002/aheh.200400591.

    Article  Google Scholar 

  • Lado, L. R., Hengl, T., & Reuter, H. I. (2008). Heavy metals in European soils: a geostatistical analysis of the FOREGS geochemical database. Geoderma, 148(2), 189–199. doi:10.1016/j.geoderma.2008.09.020.

    Article  CAS  Google Scholar 

  • Lair, G. J., Zehetner, F., Fiebig, M., Gerzabek, M. H., Van Gestel, C. A. M., Hein, T., … Barth, J. A. C. (2009). How do long-term development and periodical changes of river-floodplain systems affect the fate of contaminants? Results from European rivers. Environmental Pollution, 157(12), 3336–46. doi:10.1016/j.envpol.2009.06.004

  • Maliszewska-Kordybach, B., Klimkowicz-Pawlas, A., Smreczak, B., & Gałązka, R. (2011). Effect of flooding on contamination of agricultural soils with metals and PAHs: the middle vistula gap case study. Water, Air, & Soil Pollution, 223(2), 687–697. doi:10.1007/s11270-011-0894-6.

    Article  Google Scholar 

  • Martin, C. W. (2000). Heavy metal trends in floodplain sediments and valley fill, River Lahn, Germany. Catena, 39(1), 53–68. Retrieved from

    Article  CAS  Google Scholar 

  • Martin, C. W. (2009). Recent changes in heavy metal storage in flood-plain soils of the Lahn River, central Germany. Environmental Geology, 58(4), 803–814. doi:10.1007/s00254-008-1557-9.

    Article  CAS  Google Scholar 

  • Matys Grygar, T., Nováková, T., Bábek, O., Elznicová, J., & Vadinová, N. (2013). Robust assessment of moderate heavy metal contamination levels in floodplain sediments: A case study on the Jizera River, Czech Republic. The Science of the total environment, 452-453C, 233–245. doi:10.1016/j.scitotenv.2013.02.085

  • Nehyba, S., Hilscherová, K., Jarkovský, J., Dušek, L., Kuchovský, T., Zeman, J., … Holoubek, I. (2010). Grain size, geochemistry and organic pollutants in modern fluvial deposits in eastern Moravia (Czech Republic). Environmental Earth Sciences, 60(3), 591–602. doi:10.1007/s12665-009-0199-x

  • Němeček, J., Podlešáková, E., & Vácha, R. (1996). Geogenic and anthropogenic soil load. Rostlinná výroba, 42(12), 535–541.

    Google Scholar 

  • Sáňka, M., Chvátal, V., Němec, P., & Havlíková, Š. (1998). BAZÁLNÍ MONITORING ZEMĚDĚLSKÝCH PŮD A MONITORING ATMOSFÉRICKÉ DEPOZICE - metodické postupy. Brno.

  • Sáňka, M., Němeček, J., Podlešáková, E., Vácha, R., & Beneš, S. (2002). Preventive values for contents of risk elements in soil (In: critical values of risk elements and persistent organic pollutants in soils and their uptake by plants. Praha: Final report of research project of the Ministry of Environment of the Czech Republic.

    Google Scholar 

  • Schipper, A. M., Wijnhoven, S., Leuven, R. S. E. W., Ragas, A. M. J., & Hendriks, J. (2008). Spatial distribution and internal metal concentrations of terrestrial arthropods in a moderately contaminated lowland floodplain along the Rhine River. Environmental Pollution, 151(1), 17–26. doi:10.1016/j.envpol.2007.03.007.

    Article  CAS  Google Scholar 

  • Skála, J., Čechmánková, J., Vácha, R., Horváthová, V., Sáňka, M., Sáňka, O. (2013). Regionální struktura půdního pokryvu zemědělsky využívaných fluviálních půd ve vztahu k povodňové zonaci. Certifikovaná metodika MZe (in Czech).

  • Schwartz, R., Gerth, J., Neumann-Hensel, H., Bley, S., & Förstner, U. (2006). Assessment of highly polluted fluvisol in the Spittelwasser floodplain based on national guideline values and MNA-Criteria. Journal of Soils and Sediments, 6(3), 145–155.

    Article  CAS  Google Scholar 

  • Thonon Ivo. (2006). Deposition of sediment and associated heavy metals on floodplains. Utrecht.

  • Turner, J. N., Brewer, P. A., & Macklin, M. G. (2008). Fluvial-controlled metal and As mobilisation, dispersal and storage in the Río Guadiamar, SW Spain and its implications for long-term contaminant fluxes to the Doñana wetlands. Science of the Total Environment, 394(1), 144–161. doi:10.1016/j.scitotenv.2007.12.021.

    Article  CAS  Google Scholar 

  • Vácha, R., Němeček, J., & Podlešáková, E. (2002). Geochemical and anthropogenic soil loads by potentially risky elements. Rostlinná výroba, 48(10), 441–447.

    Google Scholar 

  • Vácha, R., Poláček, O., & Horváthová, V. (2003). State of contamination of agricultural soils after floods in August 2002. Plant, Soil and Environment, 49(7), 307–313.

    Google Scholar 

  • Vácha, R., Sáňka, M., Sáňka, O., Skála, J., & Čechmánková, J. (2013). The Fluvisol and sediment trace element contamination level as related to their geogenic and anthropogenic source. Plant, Soil and Environment, 59(3), 136–142.

    Google Scholar 

  • Vácha, R., Sáňka, M., Hauptman, I., Zimová, M., & Čechmánková, J. (2014). Assessment of limit values of risk elements and persistent organic pollutants in soil for Czech legislation. Plant, Soil and Environment, 60(5), 191–197.

    Google Scholar 

  • Vandecasteele, B., De Vos, B., & Tack, F. M. G. (2003). Temporal-spatial trends in heavy metal contents in sediment-derived soils along the Sea Scheldt river (Belgium). Environmental Pollution, 122(1), 7–18. Retrieved from

    Article  CAS  Google Scholar 

  • Wahsha, M., Bini, C., Zilioli, D., Spiandorello, M., & Gallo, M. (2014). Potentially harmful elements in terraced agroecosystems of NE Italy: Geogenic vs anthropogenic enrichment. Journal of Geochemical Exploration, 1–8. doi:10.1016/j.gexplo.2014.01.012

  • Wölz, J., Cofalla, C., Hudjetz, S., Roger, S., Brinkmann, M., Schmidt, B., … Hollert, H. (2008). In search for the ecological and toxicological relevance of sediment re-mobilisation and transport during flood events. Journal of Soils and Sediments, 9(1), 1–5. doi:10.1007/s11368-008-0050-0

  • Zbíral, J. (1997). Jednotné pracovní postupy ÚKZÚZ (Standard operational procedures). Brno: Central Institute for Supervising and Testing in Agriculture (in Czech).

    Google Scholar 

  • Zerling, L., Hanisch, C., & Junge, F. W. (2006). Heavy metal inflow into the floodplains at the mouth of the river Weisse Elster (Central Germany). Acta Hydrochimica et Hydrobiologica, 34(3), 234–244. doi:10.1002/aheh.200400624.

    Article  CAS  Google Scholar 

Download references


This work was supported by the project of MV No. VG20102014026 and by the European Social Fund in the Czech Republic (OP Education for Competitiveness), and the state budget of the Czech Republic.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Milan Sáňka.

Electronic supplementary material

Below is the link to the electronic supplementary material.


(PDF 205 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bednářová, Z., Komprdová, K., Kalábová, T. et al. Impact of Floods and Their Frequency on Content and Distribution of Risk Elements in Alluvial Soils. Water Air Soil Pollut 226, 15 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:


  • Risk element
  • Floodplain
  • Soil contamination
  • Agricultural soils