Skip to main content
Log in

Evaluation of Mutagenic and Genotoxic Activity in Vinasses Subjected to Different Treatments

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The mutagenic and genotoxic activity of vinasses collected from a fuel alcohol plant, located in the municipality of Frontino, Northwestern Colombia, were evaluated. Two samples obtained from an 82-L capacity hybrid reactor (UASB-anaerobic filter (AF)-UASB) were studied under laboratory conditions after being treated with biological oxidation, the first, and the second with Fenton reaction consecutively. Mutagenicity was evaluated in vitro by the Ames test using strains TA98 and TA100 with and without S9 metabolic activation. The genotoxic analysis was conducted using the Allium cepa roots assay where chromosomal aberrations were used as clastogenic or aneugenic response markers, and micronuclei as mutagenic response. The Ames test results showed a strain-dependent positive linear association with the vinasse sample concentration before treatment (dose–response effect). Unlike TA100, strain TA98 showed a mutagenic effect in both the presence and absence of metabolic enzymes. After the biological oxidation treatment, vinasse mutagenicity significantly decreased. Finally, after Fenton treatment, the sample did not induce any mutagenic event. Genotoxic activity was observed in all three samples, but there was a higher frequency in the vinasse sample before treatment. Concerning the frequency of micronuclei, no clear association was observed with either the concentration or the type of sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdel Migid, H. M., Azab, Y. A., & Ibrahim, W. M. (2007). Use of plant genotoxicity bioassay for the evaluation of efficiency of algal biofilters in bioremediation of toxic industrial effluent. Ecotoxicology and Environmental Safety, 66, 57–64.

    Article  CAS  Google Scholar 

  • Acilan, C., Potter, D. M., & Saunders, W. S. (2007). DNA repair pathways involved in anaphase bridge formation. Genes, Chromosomes and Cancer, 46, 522–531.

    Article  CAS  Google Scholar 

  • Ames, B. N., McCann, J., & Yamasaki, E. (1975). Methods for detecting carcinogens and mutagens with the Salmonella/mammalian-microsome mutagenicity test. Mutation Research, 31, 347–363.

    Article  CAS  Google Scholar 

  • Beltrán de Heredia, J. (2005). Tratamiento de las aguas residuales de destilerías de vino mediante un proceso combinado delodos activos y oxidación química. Alimentación Equipos Y Tecnología, 198, 55–59.

    Google Scholar 

  • Beltrán, F. J., García-Araya, J. F., & Álvarez, P. M. (1999). Wine distillery wastewater degradation. 2. Improvement of aerobic biodegradation by means of an integrated chemical (ozone)-biological treatment. Journal of Agricultural and Food Chemistry, 47, 3919–3924.

    Article  Google Scholar 

  • Castegnaro, M., De Méo, M., Laget, M., Michelon, J., Garren, L., Sportouch, M. H., & Hansel, S. (1997). Chemical degradation of wastes of antineoplastic agents. 2: Six anthracyclines: idarubicin, doxorubicin, epirubicin, pirarubicin, aclarubicin, and daunorubicin. International Archives of Occupational and Environmental Health, 70, 378–384.

    Article  CAS  Google Scholar 

  • Chandra, R., Bharagava, R. N., & Rai, V. (2008). Melanoidins as major colourant in sugarcane molasses based distillery effluent and its degradation. Bioresource Technology, 99, 4648–4660.

    Article  CAS  Google Scholar 

  • Christofoletti, A., Pedro-Escher, J., & Fontanetti, C. (2013a). Assessment of the Genotoxicity of Two Agricultural Residues After Processing by Diplopods Using the Allium cepa Assay. Water, Air, & Soil Pollution, 224, 1523–1537.

    Article  Google Scholar 

  • Christofoletti, C. A., Escher, J. P., Correia, J. E., Marinho, J. F., & Fontanetti, C. S. (2013b). Sugarcane vinasse: environmental implications of its use. Waste Management, 33, 2752–2761.

    Article  CAS  Google Scholar 

  • Corvi, R., Albertini, S., Hartung, T., Hoffmann, S., Maurici, D., Pfuhler, S., van Benthem, J., & Vanparys, P. (2008). ECVAM retrospective validation of in vitro micronucleus test (MNT). Mutagenesis, 23, 271–283.

    Article  CAS  Google Scholar 

  • Dash, S., Panda, K. K., & Panda, B. B. (1988). Biomonitoring of low levels of mercurial derivatives in water and soil by Allium micronucleus assay. Mutation Research/Environmental Mutagenesis and Related Subjects, 203, 11–21.

    Article  CAS  Google Scholar 

  • de Heredia, J. B., Dominguez, J., & Partido, E. (2005). Physico-chemical treatment for the depuration of wine distillery wastewaters(vinasses). Sustainable Viticulture and Winery Wastes Management, 51, 159–166.

    Google Scholar 

  • El-Shahaby, O., Migid, H. M. A., Soliman, M., & Mashaly, I. (2003). Genotoxicity screening of industrial wastewater using the Allium chromosome aberration assay. Pakistan Journal of Biological Sciences, 6, 23–28.

    Article  Google Scholar 

  • Fernandes, T., Mazzeo, D., & Marin-Morales, M. (2007). Mechanism of micronuclei formation in polyploidizated cells of Allium cepa exposed to triXuralin herbicide. Pesticide Biochemistry and Physiology, 88, 252–259.

    Article  CAS  Google Scholar 

  • Grant, W., Lee, H., Logan, D., & Salamone, M. (1992). The use of Tradescantia and Vicia faba bioassays for the in situ detection of mutagens in an aquatic environment. Mutation Research, 270, 53–64.

    Article  CAS  Google Scholar 

  • Hansel, S., Castegnaro, M., Sportouch, M. H., De Méo, M., Milhavet, J. C., Laget, M., & Duménil, G. (1997). Chemical degradation of wastes of antineoplastic agents: cyclophosphamide, ifosfamide and melphalan. International Archives of Occupational and Environmental Health, 69, 109–114.

    Article  CAS  Google Scholar 

  • Kitts, D. D., Wu, C. H., Stich, H. F., & Powrie, W. D. (1993). Effect of glucose-lysine Maillard reaction products on bacterial and mammalian cell mutagenesis. Journal of Agricultural and Food Chemistry, 41, 2353–2358.

    Article  CAS  Google Scholar 

  • Leme, D. M., & Marin-Morales, M. A. (2008). Chromosome aberration and micronucleus frequencies in Allium cepa cells exposed to petroleum polluted water–A case study. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 650, 80–86.

    Article  CAS  Google Scholar 

  • Leme, D. M., & Marin-Morales, M. A. (2009). Allium cepa test in environmental monitoring: a review on its application. Mutation Research/Reviews in Mutation Research, 682, 71–81.

    Article  CAS  Google Scholar 

  • Ma, T. H., Xu, Z., Xu, C., McConnell, H., Rabago, E. V., Arreola, G. A., & Zhang, H. (1995). The improved Allium/Vicia root tip micronucleus assay for clastogenicity of environmental pollutants. Mutation Research, 334, 185–195.

    Article  CAS  Google Scholar 

  • Maertens, R., Bailey, J., & White, P. (2004). The mutagenic hazards of settled house dust: a review. Mutation Research-Reviews in Mutation Research, 567, 401–425.

    Article  CAS  Google Scholar 

  • Mahadevan, B., Lucha, A., Atkin, J., Nguyena, T., Sharma, A., Aminc, S., & Baird, W. (2006). Investigation of the genotoxicity of dibenzo[c, p]chrysene in human carcinoma MCF-7 cells in culture. Chemico-Biological Interactions, 164, 181–191.

    Article  CAS  Google Scholar 

  • Maluszynska, J., & Juchimiuk, J. (2005). Plant genotoxicity: a molecular cytogenetic approach in plant bioassays. Arhiv za Higijenu Rada i Toksikologiju, 56, 177–184.

    Google Scholar 

  • Maron, D., & Ames, B. (1983). Revised methods for the Salmonella mutagenicity test. Mutation Research, 113, 173–215.

    Article  CAS  Google Scholar 

  • Matilainen, A., & Sillanpää, M. (2010). Removal of natural organic matter from drinking water by advanced oxidation processes. Chemosphere, 80, 351–365.

    Article  CAS  Google Scholar 

  • Mohana, S., Acharya, B. K., & Madamwar, D. (2009). Distillery spent wash: Treatment technologies and potential applications. Journal of Hazardous Materials, 163, 12–25.

    Article  CAS  Google Scholar 

  • Murray, A. W., & Kirschner, M. W. (1989). Dominoes and clocks: the union of two views of the cell cycle. Science, 246, 614–621.

    Article  CAS  Google Scholar 

  • Nandy, T., Shastry, S., & Kaul, S. (2002). Wastewater management in a cane molasses distillery involving bioresource recovery. Journal of Environmental Management, 65, 25–38.

    Article  Google Scholar 

  • Novelo, R. I. M., Reyes, R. B. G., Borges, E. R. C., & Riancho, M. R. S. (2010). Tratamiento de lixiviados por oxidación Fenton. Ingeniería e Investigación, 30, 80–85.

    CAS  Google Scholar 

  • Ohmomo, S., Daengsubha, W., Yoshikawa, H., Yui, M., Nozaki, K., Nakajima, T., & Nakamura, I. (1988). Screening of anaerobic bacteria with the ability to decolorize molasses melanoidin (microbiology & fermentation industry). Agricultural and Biological Chemistry, 52, 2429–2435.

    Article  CAS  Google Scholar 

  • Oñate, J. F., & Paruma, A. F. (2007). Potencialidad Mutagénica y Genotóxica de Afluentes de una Planta de Potabilización del Suroccidente de Medellín (planta “A”). Popayán: Universidad del Cauca.

    Google Scholar 

  • Pala, A., & Erden, G. (2005). Decolorization of a baker's yeast industry effluent by Fenton oxidation. Journal of Hazardous Materials, 127, 141–148.

    Article  CAS  Google Scholar 

  • Parnaudeau, V., Condom, N., Oliver, R., Cazevieille, P., & Recous, S. (2008). Vinasse organic matter quality and mineralization potential, as influenced by raw material, fermentation and concentration processes. Bioresource Technology, 99, 1553–1562.

    Article  CAS  Google Scholar 

  • Radic, S., Stipanicev, D., Vujcic, V., Rajcic, M. M., Sirac, S., & Pevalek-Kozlina, B. (2010). The evaluation of surface and wastewater genotoxicity using the Allium cepa test. Science of the Total Environment, 408, 1228–1233.

    Article  CAS  Google Scholar 

  • Raghukumar, C., Mohandass, C., Kamat, S., & Shailaja, M. (2004). Simultaneous detoxification and decolorization of molasses spent wash by the immobilized white-rot fungus Flavodon flavus isolated from a marine habitat. Enzyme and Microbial Technology, 35, 197–202.

    Article  CAS  Google Scholar 

  • Rustenbil, J., & Poortvliet, T. (1992). Copper and zinc in estuarine water: chemical speciation in relation to bioavailability to the marine planktonic diatom Ditylum brightwellii. Environmental Toxicology and Chemistry, 11, 1615–1625.

    Article  Google Scholar 

  • Satyawali, Y., & Balakrishnan, M. (2008). Wastewater treatment in molasses-based alcohol distilleries for COD and color removal: a review. Journal of Environmental Management, 86, 481–497.

    Article  CAS  Google Scholar 

  • Seth, C., Misra, V., Chauhan, L., & Singh, R. (2008). Genotoxicity of cadmium on root meristem cells of Allium cepa: cytogenetic and Comet assay approach. Ecotoxicology and Environmental Safety, 71, 711–716.

    Article  CAS  Google Scholar 

  • Srivastava, S., & Jain, R. (2010). Effect of distillery spent wash on cytomorphological behaviour of sugarcane settlings. Journal of Environmental Biology, 31(5), 809–812.

    CAS  Google Scholar 

  • Vargas, V. M. F., Guidobono, R. R., Jordão, C., & Henriques, J. A. P. (1995). Use of two short-term tests to evaluate the genotoxicity of river water treated with different concentration/extraction procedures. Mutation Research/Genetic Toxicology, 343, 31–52.

    Article  CAS  Google Scholar 

  • Vargas, V. M. F., Miglivaca, S. B., Melo, A. C., Horn, R. C., Guidobono, R. R., Sa Ferreira, I. C. F., & Pestana, M. H. D. (2001). Genotoxicity assessment in aquatic environments under the influence of heavy metal and organic contaminants. Mutation Research, 490, 141–158.

    Article  CAS  Google Scholar 

  • Wolmarans, B., & De Villiers, G. H. (2004). Start-up of a UASB effluent treatment plant on distillery wastewater. Water SA, 28, 63–68.

    Google Scholar 

  • Yessilada, E. (1999). Genotoxic activity of vinasse and its effect on fecundity and longevity of Drosophila melanogaster. Bulletin of Environmental Contamination and Toxicology, 63, 560–566.

    Article  Google Scholar 

  • Yildiz, M., Ciğerci, I. H., Konuk, M., Fidan, A. F., & Terzi, H. (2009). Determination of genotoxic effects of copper sulphate and cobalt chloride in Allium cepa root cells by chromosome aberration and comet assays. Chemosphere, 75, 934–938.

    Article  CAS  Google Scholar 

  • Zuleta, M., Uribe, Y., Valencia, C., Vargas, H., Orozco, L. Y., & Lopez, C. (2004). Contribución de la contaminación y cloración en la Mutagénicidad, genotoxicidad y presencia de mutágenos en agua potable. Actualités Biologiques, 26, 125–136.

    CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the Ministry of Agriculture of Colombia and the Strategy of Groups Sustenance 2011–2012 of the University of Antioquia for financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Oñate.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oñate, J., Arenas, A., Ruiz, A. et al. Evaluation of Mutagenic and Genotoxic Activity in Vinasses Subjected to Different Treatments. Water Air Soil Pollut 226, 144 (2015). https://doi.org/10.1007/s11270-014-2250-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-2250-0

Keywords

Navigation