Skip to main content
Log in

Application of Biochar for Enhancing Cadmium and Zinc Phytostabilization in Vigna radiata L. Cultivation

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Cadmium (Cd) is a toxic and nonessential element. Because of its toxicity, Cd soil contamination is a major environmental risk to living organisms. Several studies have reported on the successful use of biochar to immobilize Cd in soil as it reduces Cd accumulation in plant parts. This research reports on the contrasting effect of biochar on enhancing Cd uptake by plants. A cassava stem biochar produced through low-temperature pyrolysis was applied to natural Cd-contaminated soil that also had a high zinc (Zn) concentration. Vigna radiata L. (a green bean) was grown in treatments receiving three biochar rates, i.e., 5, 10, and 15 %, respectively. The results showed that the 10 % biochar-amended soil had a positive effect on promoting plant growth and seed yield. Unfortunately, 15 % biochar-amended soil caused an adverse effect to plant growth. Cadmium uptake by plants increased with increasing biochar application rate. Zinc uptake by plants tended to decrease with biochar application. Cadmium and Zn bioavailability in soil was significantly reduced with an increasing biochar application rate. The results also showed that the biochar-amended soil could be an alternative and cost-effective method to promote plant growth and decrease Cd mobility in soil. The ratio of Cd concentration in plant root to soil was higher than 1, while the translocation factor from root to shoot was less than 1. These results indicate that the cultivation of V. radiata L. coupled with biochar application is an appropriate method to enhance Cd phytostabilization efficiency of V. radiata L. in Cd-polluted sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ameloot, N., Sleutel, S., Das, K. C., Kanagaratnam, J., & De Neve, S. (2013). Biochar amendment to soils with contrasting organic matter level: effects on N mineralization and biological soil properties. GCB Bioenergy. doi:10.1111/gcbb.12119.

    Google Scholar 

  • Bech, J., Duran, P., Roca, N., Poma, W., Sanchez, I., Roca-Perez, L., Boluda, R., Barcelo, J., & Poschenrieder, C. (2012). Accumulation of Pb and Zn in Bidens triplinervia and Senecio sp. spontaneous species from mine spoils in Peru and their potential use in phytoremediation. Journal of Geochemical Exploration, 123, 109–113.

    Article  CAS  Google Scholar 

  • Bolan, N. S., Hedley, M. J., & White, R. E. (1991). Processes of soil acidification during nitrogen cycling with emphasis on legume based pastures. Journal of Plant and Soil, 134, 53–63.

    Article  CAS  Google Scholar 

  • Bolan, N., Kunhikrishnan, A., Thangarajan, R., Kumpiene, J., Park, J., Makino, T., Kirkham, M. B., & Scheckel, K. (2014). Review remediation of heavy metal(loid)s contaminated soils: to mobilize or to immobilize? Journal of Hazardous Materials, 266, 141–166.

    Article  CAS  Google Scholar 

  • Cao, X. D., Ma, L. N., Gao, B., & Harris, W. (2009). Dairy-manure derived biochar effectively sorbs lead and atrazine. Environmental Science and Technology, 43, 3285–3291.

    Article  CAS  Google Scholar 

  • Chorom, M., Karkaragh, R. M., Kaviani, B., & Kalkhajeh, Y. K. (2013). Monometal and competitive adsorption of Cd, Ni, and Zn in soil treated with different contents of cow manure. Applied and Environmental Soil Science. doi:10.1155/2013/510278. Article ID 510278.

    Google Scholar 

  • Cui, S., Zhou, Q., & Chao, L. (2007). Potential hyper-accumulation of Pb, Zn, Cu and Cd in endurant plants distributed in an old smeltery, northeast China. Environmental Geology, 51, 1043–1048.

    Article  CAS  Google Scholar 

  • Fellet, G., Marmiroli, M., & Marchiol, L. (2014). Elements uptake by metal accumulator species grown on mine tailings amended with three types of biochar. Science of the Total Environment, 468–469, 598–608.

    Article  Google Scholar 

  • Garcia, L., & John, J. H. (1976). Foliar fertilization of soybeans during the seed-filling period. Agronomy Journal, 68(4), 653–657.

    Article  Google Scholar 

  • Gallego, S. M., Pena, L. B., Barcia, R. A., Azpilicueta, C. E., Iannone, M. F., Rosales, E. P., Zawoznik, M. S., Groppa, M. D., & Benavides, M. P. (2012). Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environmental and Experimental Botany, 83, 33–46.

    Article  CAS  Google Scholar 

  • Hassan, Z., & Aarts, M. G. M. (2011). Opportunities and feasibilities for biotechnological improvement of Zn, Cd or Ni tolerance and accumulation in plants. Environmental and Experimental Botany, 72, 53–63.

    Article  CAS  Google Scholar 

  • Houben, D., Evrard, L., & Sonnet, P. (2013a). Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd, Pb and Zn and the biomass production of rapeseed (Brassica napus L.). Biomass and Energy, 57, 196–204.

    Article  CAS  Google Scholar 

  • Houben, D., Evrard, L., & Sonnet, P. (2013b). Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar. Chemosphere, 92, 1450–1457.

    Article  CAS  Google Scholar 

  • Kamal, M., Ghaly, A. E., Mahmoud, N., & Cote, R. (2004). Phytoaccumulation of heavy metals by aquatic plants. Environment International, 29, 1029–1039.

    Article  CAS  Google Scholar 

  • Kołodynska, D., Wnetrzak, R., Leahy, J. J., Hayes, M. H. B., Kwapinski, W., & Hubicki, Z. (2012). Kinetic and adsorptive characterization of biochar in metal ions removal. Chemical Engineering Journal, 197, 295–305.

    Article  Google Scholar 

  • Lee, J. W., Kidder, M., Evans, B. R., Paik, S., Buchanan, A. C., Garten, C. T., & Brown, R. C. (2010). Characterization of biochars produced from cornstovers for soil amendment. Environmental Science and Technology, 44, 7970–7974.

    Article  CAS  Google Scholar 

  • Lehmann, J., & Joseph, S. (2009). Biochar for environmental management (p. 416). London: Earth Scan Publishers.

  • Li, M., Liu, Q., Guo, L., Zhang, Y., Lou, Z., Wang, Y., & Qian, G. (2013). Cu(II) removal from aqueous solution by Spartina alterniflora derived biochar. Bioresource Technology, 141, 83–88.

    Article  CAS  Google Scholar 

  • Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O’Neill, B., Skjemstad, J. O., Thies, J., Luizão, F. J., Petersen, J., & Neves, E. G. (2006). Black carbon increases cation exchange capacity in soils. Soil Science Society of America Journal, 70, 1719–1730.

    Article  CAS  Google Scholar 

  • Malik, R. N., Husain, S. Z., & Nazir, I. (2010). Heavy metal contamination and accumulation in soil and wild plant species from industrial area of Islamabad, Pakistan. Pakistan Journal of Botany, 42(1), 291–301.

    CAS  Google Scholar 

  • Mclatchey, G. P., & Reddy, K. R. (1998). Regulation of organic matter decomposition and nutrient release in a wet soil. Journal of Environmental Quality, 27, 1268–1274.

    Article  CAS  Google Scholar 

  • Mukherjee, A., & Lal, R. (2014). The biochar dilemma. Soil Research, 52(3), 217–230.

    Article  CAS  Google Scholar 

  • Mukherjee, A., & Zimmerman, A. R. (2013). Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar–soil mixtures. Geoderma, 193–194, 122–130.

    Article  Google Scholar 

  • Okeola, F. O., & Odebunmi, E. O. (2010). Comparison of Freundlich and Langmuir isotherms for adsorption of methylene blue by agrowaste derived activated carbon. Advances in Environmental Biology, 4(3), 329–335.

    CAS  Google Scholar 

  • Panwar, B. S., Singh, J. P., & Laura, R. D. (1999). Cadmium uptake by cowpea and mungbean as affected by Cd and P application. Water, Air, and Soil Pollution, 112, 163–169.

    Article  CAS  Google Scholar 

  • Park, J. H., Choppala, G., Bolan, N., Chung, J. W., & Chuasavathi, T. (2011). Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant and Soil, 348, 439–451.

    Article  CAS  Google Scholar 

  • Park, J. H., Choppala, G., Lee, S. J., Bolan, N., Chung, J. W., & Edraki, M. (2013). Comparative sorption of Pb and Cd by biochars and its implication for metal immobilization in soils. Water, Air, and Soil Pollution, 224, 1711. doi:10.1007/s11270-013-1711-1.

    Article  Google Scholar 

  • Paz-Ferreiro, J., Lu, H., Fu, S., Mendez, A., & Gasco, G. (2014). Use of phytoremediation and biochar to remediate heavy metal polluted soils: a review. Solid Earth, 5, 65–75.

    Article  Google Scholar 

  • Pence, N. S., Larsen, P. B., Ebbs, S. D., Letham, D. L. D., Lasat, M. M., Garvin, D. F., Eide, D., & Kochian, L. V. (2000). The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proceedings of the National Academy of Sciences of the United States of America, 97, 4956–4960.

    Article  CAS  Google Scholar 

  • Prasad, M. N. V. (2003). Phytoremediation of metal-polluted ecosystems: hype for commercialization. Russian Journal of Plant Physiology, 50, 686–700.

    Article  CAS  Google Scholar 

  • Quevauviller, P., Lachica, M., Barahona, E., Gomez, A., Rauret, G., Ure, A., & Muntau, H. (1998). Certified reference material for the quality control of EDTA- and DTPA-extractable trace metal contents in calcareous soil (CRM 600). Fresenius Journal of Analytical Chemistry, 360, 505–511.

    Article  CAS  Google Scholar 

  • Rao, K. S., Mohapatra, M., Anand, S., & Venkateswarlu, P. (2010). Review on cadmium removal from aqueous solutions. International Journal of Engineering, Science and Technology, 2, 81–103.

    Google Scholar 

  • Rees, F., Simonnot, M. O., & Morela, J. L. (2014). Short-term effects of biochar on soil heavy metal mobility are controlled by intra-particle diffusion and soil pH increase. European Journal of Soil Science, 65, 149–161.

    Article  CAS  Google Scholar 

  • Regmi, P., Moscoso, J. L. G., Kumar, S., Cao, X., Mao, J., & Schafran, G. (2012). Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process. Journal of Environmental Management, 109, 61–69.

    Article  CAS  Google Scholar 

  • Riser-Roberts, E. (1998). Remediation of petroleum contaminated soils: biological, physical, and chemical processes (p. 576). Florida: CRC.

    Book  Google Scholar 

  • Romkens, P. F. A. M., Guo, H. Y., Chu, C. L., Liu, T. S., Chiang, C. F., & Koopmans, G. F. (2009). Prediction of cadmium uptake by brown rice and derivation of soil–plant transfer models to improve soil protection guidelines. Environmental Pollution, 157, 2435–2444.

    Article  CAS  Google Scholar 

  • Simmons, R. W., Pongsakul, P., Saiyasitpanich, D., & Klinphoklap, S. (2005). Elevated levels of cadmium and zinc in paddy soils and elevated levels of cadmium in rice grain downstream of a zinc mineralized area in Thailand: implications for public health. Environmental Geochemistry and Health, 27, 501–511.

    Article  CAS  Google Scholar 

  • Singh, B., Singh, B. P., & Cowie, A. L. (2010). Characterisation and evaluation of biochars for their application as a soil amendment. Soil Research, 48(7), 516–525.

    Article  CAS  Google Scholar 

  • Song, W., & Guo, M. (2012). Quality variations of poultry litter biochar generated at different pyrolysis temperatures. Journal of Analytical and Applied Pyrolysis, 94(3), 138–145.

    Article  CAS  Google Scholar 

  • Sterckeman, T., Redjala, T., & Morel, J. L. (2011). Influence of exposure solution composition and of plant cadmium content on root cadmium short-term uptake. Environmental and Experimental Botany, 74, 131–139.

    Article  CAS  Google Scholar 

  • Tangahu, B. V., Abdullah, S. R. S., Basri, H., Idris, M., Anuar, N., & Mukhlisin, M. (2011). A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. International Journal of Chemical Engineering. doi:10.1155/2011/939161. Article ID 939161.

    Google Scholar 

  • Tangjuank, S., Insuk, N., Tontrakoon, J., & Udeye, V. (2009). Adsorption of lead(II) and cadmium(II) ions from aqueous solutions by adsorption on activated carbon prepared from cashew nut shells. World Academy of Science, Engineering and Technology, 52, 110–116.

    Google Scholar 

  • Tajar, A. F., Kaghazchi, T., & Soleimani, M. (2009). Adsorption of cadmium from aqueous solutions on sulfurized activated carbon prepared from nut shells. Journal of Hazardous Materials, 165(1–3), 1159–1164.

    Article  Google Scholar 

  • Thomson, C. J., Marschner, H., & Romheld, V. (1993). Effect of nitrogen fertilizer form on pH of the bulk soil and rhizosphere, and on the growth, phosphorus, and micronutrient uptake of bean. Journal of Plant Nutrition, 16(30), 493–506.

    Article  CAS  Google Scholar 

  • Trakal, L., Komarek, M., Szakova, J., Zemanova, V., & Tlustos, P. (2011). Biochar application to metal-contaminated soil: evaluating of Cd, Cu, Pb and Zn sorption behavior using single- and multi-element sorption experiment. Plant, Soil and Environment, 57, 372–380.

    CAS  Google Scholar 

  • Trakal, L. T., Sigut, R., Sillerova, H., Faturikova, D., & Komarek, M. (2014). Copper removal from aqueous solution using biochar: effect of chemical activation. Arabian Journal of Chemistry, 7, 43–52.

    Article  CAS  Google Scholar 

  • Tan, C., Shanb, X., Xuc, G., Lina, Y., & Chena, Z. (2011). Phytoaccumulation of cadmium through Azolla from aqueous solution. Ecological Engineering, 37, 1942–1946.

    Article  Google Scholar 

  • Uchimiya, M., Lima, I. M., Klasson, K. T., Chang, S., Wartelle, L. H., & Rodgers, J. E. (2010). Immobilization of heavy metal ions (CuII, CdII, NiII, and PbII) by broiler litter-derived biochars in water and soil. Journal of Agricultural and Food Chemistry, 58, 5538–5544.

    Article  CAS  Google Scholar 

  • Uchimiya, M., Wartelle, L. H., Klasson, K. T., Fortier, C. A., & Lima, I. M. (2011). Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil. Journal of Agricultural and Food Chemistry, 59, 2501–2510.

    Article  CAS  Google Scholar 

  • Upadhyay, K. P., George, D., Swift, R. S., & Galea, V. (2014). The influence of biochar on growth of lettuce and potato. Journal of Integrative Agriculture, 13(3), 541–546.

    Article  Google Scholar 

  • Upadhyay, A. R., Mishraa, V. K., Pandeya, S. K., & Tripathi, B. D. (2007). Biofiltration of secondary treated municipal wastewater in a tropical city. Ecological Engineering, 30, 9–15.

    Article  Google Scholar 

  • US Environmental Protection Agency (US EPA). (1996). Method 3050B acid digestion of sediments, sludges, and soils: revision 2. [Online] Available from: http://www.epa.gov/osw//hazard/testmethods/sw846/pdfs/3050b.pdf [2012, August 5]

  • White, P. J., & Brown, P. H. (2010). Plant nutrition for sustainable development and global health. Annals of Botany, 105, 1073–1080.

    Article  CAS  Google Scholar 

  • Xian, X. (1989). Effect of chemical forms of cadmium, zinc, and lead in polluted soil on their uptake by cabbage plants. Journal of Plant and Soil, 113, 257–264.

    Article  CAS  Google Scholar 

  • Xu, X., Cai, X., Zhao, L., Wang, H., Yu, H., & Gao, B. (2013). Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar. Environmental Science and Pollution Research, 20(1), 358–368.

    Article  CAS  Google Scholar 

  • Yadav, S. K., Juwarkar, A. A., Kumar, G. P., Thawale, P. R., Singh, S. K., & Chakrabarti, T. (2009). Bioaccumulation and phyto-translocation of arsenic, chromium and zinc by Jatropha curcas L.: impact of dairy sludge and biofertilizer. Bioresource Technology, 100, 4616–4622.

    Article  CAS  Google Scholar 

  • Yoon, J., Cao, X., Zhou, Q., & Ma, L. Q. (2006). Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. The Science of the Total Environment, 368, 456–464.

    Article  CAS  Google Scholar 

  • Yuan, J., Xu, R., & Zhang, H. (2011). The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource Technology, 102, 3488–3497.

    Article  CAS  Google Scholar 

  • Zheng, H., Wang, Z., Deng, X., Herbert, S., & Xing, B. (2013). Impacts of adding biochar on nitrogen retention and bioavailability in agricultural soil. Geoderma, 206, 32–39.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by grants awarded through the 90th Year Chulalongkorn Scholarship, Graduate School, Chulalongkorn University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songkrit Prapagdee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prapagdee, S., Piyatiratitivorakul, S., Petsom, A. et al. Application of Biochar for Enhancing Cadmium and Zinc Phytostabilization in Vigna radiata L. Cultivation. Water Air Soil Pollut 225, 2233 (2014). https://doi.org/10.1007/s11270-014-2233-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-2233-1

Keywords

Navigation