Water, Air, & Soil Pollution

, 225:2216 | Cite as

Mapping Methane and Carbon Dioxide Concentrations and δ13C Values in the Atmosphere of Two Australian Coal Seam Gas Fields

  • Damien T. Maher
  • Isaac R. Santos
  • Douglas R. Tait


Fugitive greenhouse gas emissions from unconventional gas extraction processes (e.g. shale gas, tight gas and coal bed methane/coal seam gas) are poorly understood due in part to the extensive area over which these emissions may occur. We apply a rapid qualitative approach for source assessment at the scale of a large gas field. A mobile cavity ring down spectrometer (Picarro G2201-i) was used to provide real-time, high-precision methane and carbon dioxide concentration and carbon isotope ratios (δ13C), allowing for “on the fly” decision making and therefore an efficient and dynamic surveying approach. The system was used to map the atmosphere of a production coal seam gas (CSG) field (Tara region, Australia), an area containing pre-production “exploration” CSG wells (Casino, Australia), and various other potential CO2 and CH4 sources (i.e. wetlands, sewage treatment plants, landfills, urban areas and bushfires). Results showed a widespread enrichment of both CH4 (up to 6.89 ppm) and CO2 (up to 541 ppm) within the production gas field, compared to outside. The CH4 and CO2 δ13C source values showed distinct differences within and outside the production field, indicating a CH4 source within the production field that has a δ13C signature comparable to the regional CSG. While this study demonstrates how the method can be used to qualitatively assess the location and source of emissions, integration with atmospheric models may allow for quantitative assessment of emissions. The distinct patterns observed within the CSG field demonstrates the need to fully quantify the atmospheric flux of natural and anthropogenic, point and diffuse sources of greenhouse gases from individual Australian gas fields before and after production commences.


Methane Carbon dioxide Cavity ring down spectroscopy Natural gas Coal seam gas Greenhouse gas Fugitive emissions 



The instrumentation used in this study was funded by the Australian Research Council (LE120100156). DTM is supported by an S.C.U. Postdoctoral Fellowship.


  1. Allen, D. T., Torres, V. M., Thomas, J., Sullivan, D. W., Harrison, M., Hendler, A., et al. (2013). Measurements of methane emissions at natural gas production sites in the United States. Proceedings of the National Academy of Sciences, 110(44), 17768–17773. doi: 10.1073/pnas.1304880110.CrossRefGoogle Scholar
  2. Cathles, L. M., Brown, L., Taam, M., & Hunter, A. (2012). A commentary on “The greenhouse-gas footprint of natural gas in shale formations” by R.W. Howarth, R. Santoro, and Anthony Ingraffea. Climatic Change 113(525–535), doi: 10.1007/s10584-011-0333-0.
  3. Chanton, J. P., Chasar, L. C., Glaser, P., & Siegel, D. (2005). Carbon and hydrogen isotopic effects in microbial methane from terrestrial environments. In L. B. Flanagan, J. R. Ehleringer, & D. E. Pataki (Eds.), Stable isotopes and biosphere-atmosphere interactions, physiological ecology series (pp. 85–105). Amsterdam: Elsevier-Acadamic Press.CrossRefGoogle Scholar
  4. Ciais, P., Tans, P. P., Trolier, M., White, J. W. C., & Francey, R. J. (1995). A large northern hemisphere terrestrial CO2 sink indicated by the 13C/12C ratio of atmospheric CO2. Science, 269(5227), 1098–1102. doi: 10.1126/science.269.5227.1098.CrossRefGoogle Scholar
  5. Corbett, J. E., Tfaily, M. M., Burdige, D. J., Cooper, W. T., Glaser, P. H., & Chanton, J. P. (2012). Partitioning pathways of CO2 production in peatlands with stable carbon isotopes. Biogeochemistry. doi: 10.1007/s10533-012-9813-1.Google Scholar
  6. Draper, J. J., & Boreham, C. J. (2006). Geological controls on exploitable coal seam gas distribution in Queensland. APPEA Journal, 46, 343–366.Google Scholar
  7. Hayhoe, K., Kheshgi, H. S., Jain, A. K., & Wuebbles, D. J. (2002). Substitution of natural gas for coal: climatic effects of utility sector emissions. Climatic Change, 54, 107–139.CrossRefGoogle Scholar
  8. Howarth, R. W., Santoro, R., & Ingraffea, A. (2011). Methane and greenhouse-gas footprint of natural gas from shale formations. Climatic Change, 106, 679–690. doi: 10.1007/s10584-011-0061-5.CrossRefGoogle Scholar
  9. IPCC. (2006). 2006 IPCC guidelines for national greenhouse gas inventories. Hayama: IPCC.Google Scholar
  10. Jackson, R. B., Down, A., Phillips, N. G., Ackley, R. C., Cook, C. W., Plata, D. L., et al. (2014). Natural gas pipeline leaks across Washington, DC. Environmental Science & Technology, 48(3), 2051–2058. doi: 10.1021/es404474x.CrossRefGoogle Scholar
  11. Jaramillo, P., Griffin, W. M., & Mathews, H. S. (2007). Comparative life-cycle air emissions of coal, domestic natural gas, LNG, and SNG for electricity generation. Environmental Science & Technology, 41(17), 6290–6296. doi: 10.1021/es063031o.CrossRefGoogle Scholar
  12. Karion, A., Sweeney, C., Pétron, G., Frost, G., Hardesty, R. M., Kofler, J., et al. (2013). Methane emissions from airborne measurements over a western United States natural gas field. Geophysical Research Letters, 40, 4393–4397. doi: 10.1002/grl.50811.CrossRefGoogle Scholar
  13. Keeling, C. D. (1958). The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas. Geochimica et Cosmochimica Acta, 13, 322–334.CrossRefGoogle Scholar
  14. Kerstel, E. (2004). Isotope ratio infrared spectrometry. In P. A. de Groot (Ed.), Handbook of stable isotope techniques (pp. 759–787). Amsterdam: Elsevier.Google Scholar
  15. Kerstel, E., & Gianfrani, L. (2008). Advances in laser-based isotope ratio measurements: selected applications. Applied Physics B: Lasers and Optics, 92, 439–449. doi: 10.1007/s00340-008-3128-x.CrossRefGoogle Scholar
  16. Krevor, S., Perrin, J.-C., Esposito, A., Rella, C., & Benson, S. (2010). Rapid detection and characterization of surface CO2 leakage through the real-time measurement of δ13C signatures in CO2 flux from the ground. International Journal of Greenhouse Gas Control, 4, 811–815. doi: 10.1016/j.ijggc.2010.05.002.CrossRefGoogle Scholar
  17. Miller, J. B., & Tans, P. P. (2003). Calculating isotopic fractionation from atmospheric measurements at various scales. Tellus, 55B, 207–214.CrossRefGoogle Scholar
  18. Moore, C. W., Zielinska, B., Pètrone, G., & Jackson, R. B. (2014). Air impacts of increased natural gas acquisition, processing, and use: a critical review. Environmental Science & Technology. doi: 10.1021/es4053472.Google Scholar
  19. Osborn, S. G., Vengosh, A., Warner, N. R., & Jackson, R. B. (2011). Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing. Proceedings of the National Academy of Sciences, USA, 108(20), 8172–8176.CrossRefGoogle Scholar
  20. Pataki, D. E., Ehleringer, J. R., Flanagan, L. B., Yakir, D., Bowling, D. R., Still, C. J., et al. (2003). The application and interpretation of Keeling plots in terrestrial carbon cycle research. Global Biogeochemical Cycles, 17(1), 1022. doi: 10.1029/2001GB001850.CrossRefGoogle Scholar
  21. Pétron, G., Frost, G., Miller, B. R., Hirsch, A. I., Montzka, S. A., Karion, A., et al. (2012). Hydrocarbon emissions characterization in the Colorado Front Range: a pilot study. Journal of Geophysical Research, 117, D04304. doi: 10.1029/2011JD016360.CrossRefGoogle Scholar
  22. Scott, S., Anderson, B., Crosdale, P., Dingwall, J., & Leblang, G. (2004). Revised geology and coal seam gas characteristics of the Walloon Subgroup–Surat Basin, Queensland. Paper presented at the Eastern Australasian Basins Symposium II.Google Scholar
  23. Scott, S., Anderson, B., Crosdale, P., Dingwall, J., & Leblang, G. (2007). Coal petrology and coal seam gas contents of the Walloon Subgroup—Surat Basin, Queensland, Australia. International Journal of Coal Geology, 70, 209–222. doi: 10.1016/j.coal.2006.04.010.CrossRefGoogle Scholar
  24. Sgamma, K. M. (2012). Colarado methane study not clear-cut. Nature, 483, 407.CrossRefGoogle Scholar
  25. Sharma, S., & Baggett, J. K. (2011). Application of carbon isotopes to detect seepage out of coalbed natural gas produced water impoundments. Applied Geochemistry, 26, 1423–1432. doi: 10.1016/j.apgeochem.2011.05.015.CrossRefGoogle Scholar
  26. Tait, D. R., Santos, I. R., Maher, D. T., Cyronak, T. J., & Davis, R. J. (2013). Enrichment of radon and carbon dioxide in the open atmosphere of an Australian coal seam gas field. Environmental Science & Technology, 47, 3099–3104. doi: 10.1021/es304538g.CrossRefGoogle Scholar
  27. Townsend-Small, A., Tyler, S. C., Pataki, D. E., Xu, X., & Christensen, L. E. (2012). Isotopic measurements of atmospheric methane in Los Angeles, California, USA: influence of “fugitive” fossil fuel emissions. Journal of Geophysical Research, 117, D07308. doi: 10.1029/2011JD016826.CrossRefGoogle Scholar
  28. Whiticar, M. J. (1996). Stable isotope geochemistry of coals, humic kerogens and related natural gases. International Journal of Coal Geology, 32, 191–215.CrossRefGoogle Scholar
  29. Whiticar, M. J. (1999). Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chemical Geology, 161, 291–314.CrossRefGoogle Scholar
  30. Whiticar, M. J., Faber, E., & Schoell, M. (1986). Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation—isotope evidence. Geochimica et Cosmochimica Acta, 50, 693–709.CrossRefGoogle Scholar
  31. Zeebe, R. E., & Wolf-Gladrow, D. (Eds.). (2001). CO 2 in seawater: equilibrium, kinetics, isotopes. Amsterdam: Elsivier Science B.V.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Damien T. Maher
    • 1
  • Isaac R. Santos
    • 1
  • Douglas R. Tait
    • 1
  1. 1.Centre for Coastal Biogeochemistry Research, School of Environment, Science and EngineeringSouthern Cross UniversityLismoreAustralia

Personalised recommendations