Skip to main content

Advertisement

Log in

A Geospatial Approach for Assessing Groundwater Vulnerability to Nitrate Contamination in Agricultural Settings

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Groundwater is the principal source of drinking water for at least one third of Earth’s human inhabitants. Thus, protection of groundwater is a critical issue in many locales. Nitrates and other contaminants that impact human health are of particular concern. Mapping of aquifer vulnerability to pollution is a critical first step in implementing groundwater management protection programs; however, mapping is often constrained by generalizations inherent in model formulation and availability of data. In this study, a groundwater vulnerability model, which employs data extracted from widely available national and statewide geospatial datasets, is used to evaluate regional groundwater pollution risk in the Elkhorn River Basin, Nebraska, USA. The model, implemented in a geographic information system (GIS), is specifically structured to address risks of nitrate contamination in agricultural landscapes; thus, land use is a key factor. Modeled groundwater vulnerability was found to be positively correlated with nitrate concentrations obtained from sampled wells. The results suggest that the approach documented here could be used effectively to model regional groundwater pollution risk in other areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Aller, L., Rennett, T., Lehr, J. H., & Petty, R. J. (1985). DRASTIC: a standardized system for evaluating ground water pollution potential using hydrogeologic settings. Washington: U.S. Environmental Protection Agency, EPA/600/2-85/018.

    Google Scholar 

  • Almasri, M. N., & Kaluarachchi, J. J. (2004). Assessment and management of long-term nitrate pollution of ground water in agriculture-dominated watersheds. Journal of Hydrology, 295(1–4), 225–245. doi:10.1016/j.jhydrol.2004.03.013.

    Article  CAS  Google Scholar 

  • Antonakos, A. K., & Lambrakis, N. J. (2007). Development and testing of three hybrid methods for the assessment of aquifer vulnerability to nitrates, based on the drastic model, an example from NE Korinthia, Greece. Journal of Hydrology, 333(2–4), 288–304. doi:10.1016/j.jhydrol.2006.08.014.

    Article  Google Scholar 

  • Arthur, J. D., Wood, H. A. R., Baker, A. E., Cichon, J. R., & Raines, G. L. (2007). Development and implementation of a Bayesian-based aquifer vulnerability assessment in Florida. Natural Resources Research, 16(2), 93–107. doi:10.1007/s11053-007-9038-5.

    Article  CAS  Google Scholar 

  • Awawdeh, M. M., & Jaradat, R. A. (2009). Evaluation of aquifers vulnerability to contamination in the Yarmouk River basin, Jordan, based on DRASTIC method. Arabian Journal of Geosciences, 3(3), 273–282. doi:10.1007/s12517-009-0074-9.

    Article  Google Scholar 

  • Barrett, J. E., & Burke, I. C. (2002). Nitrogen retention in semiarid ecosystems across a soil organic-matter gradient. Ecological Applications, 12(3), 878–890. doi:10.1890/1051-0761(2002)012[0878:NRISEA]2.0.CO;2.

    Article  Google Scholar 

  • Canter, L. W. (1997). Nitrates in Groundwater. CRC Lewis. Retrieved from http://books.google.com/books?id=79Bg5ikEPjgC

  • Cantor, K. P. (1997). Drinking water and cancer. Cancer Causes and Control, 12(3), 292–308.

    Article  Google Scholar 

  • Ceplecha, Z. L., Waskom, R. M., Bauder, T. A., Sharkoff, J. L., & Khosla, R. (2004). Vulnerability assessments of Colorado ground water to nitrate contamination. Water, Air, & Soil Pollution, 159(1), 373–394. doi:10.1023/B:WATE.0000049188.73506.c9.

    Article  CAS  Google Scholar 

  • Chen, X., & Lackey, S. O. (2010). Streambed hydrology tests in the Upper Elkhorn River between Stuart and Neligh. Nebraska: Conservation and Survey Division, University of Nebraska-Lincoln. 28 p.

    Google Scholar 

  • Chen, Z., Grasby, S. E., & Osadetz, K. G. (2002). Predicting average annual groundwater levels from climatic variables: an empirical model. Journal of Hydrology, 260(1–4), 102–117. doi:10.1016/S0022-1694(01)00606-0.

    Article  Google Scholar 

  • Civita, M. (1993). Groundwater vulnerability maps: a review. In Proceedings IX Symposium Pesticide Chemistry, Mobility and degradation of xenobiotics (p. p. 832). Presented at the In: Del Re, A.A.M., Capri, E., Evans, S.P., Natali, P., Trevisan, M (Eds.), Biagini, Lucca, Italy.pp. 832.

  • Conservation and Survey Division (CSD), University of Nebraska-Lincoln (1973). Topographic regions map of Nebraska. Online retrieved on June 1, 2013 at http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1062 &context=caripubs&sei-redir=1.

  • Croley, T. E., & Luukkonen, C. L. (2003). Potential effects of climate change on ground water in Lansing, Michigan. Journal of the American Water Resources Association, 39(1), 149–163. doi:10.1111/j.1752-1688.2003.tb01568.x.

    Article  Google Scholar 

  • Dappen, P., & Merchant, J. (2004). GIS-Based modeling of groundwater pollution risk: new and improved approaches. American Society for Photogrammetry and Remote Sensing, Images to Decisions: Remote Sensing Foundations for GIS Applications, September 12–16, 2004, Kansas City, MO.

  • Desbarats, A. J., Logan, C. E., Hinton, M. J., & Sharpe, D. R. (2002). On the kriging of water table elevations using collateral information from a digital elevation model. Journal of Hydrology, 255(1–4), 25–38. doi:10.1016/S0022-1694(01)00504-2.

    Article  Google Scholar 

  • Eckhardt, D. A. V., & Stackelberg, P. E. (1995). Relation of ground-water quality to land use on Long Island, New York. Ground Water, 33(6), 1019–1033. doi:10.1111/j.1745-6584.1995.tb00047.x.

    Article  CAS  Google Scholar 

  • Eckhardt, K., & Ulbrich, U. (2003). Potential impacts of climate change on groundwater recharge and streamflow in a central European low mountain range. Journal of Hydrology, 284(1–4), 244–252. doi:10.1016/j.jhydrol.2003.08.005.

    Article  CAS  Google Scholar 

  • Evans, B. M., & Myers, W. L. (1990). A GIS-based approach to evaluating regional groundwater pollution potential with DRASTIC. Journal of Soil and Water Conservation, 45(2), 242–245.

    Google Scholar 

  • Ferguson, R. B. (2006). Nutrient management for agronomic crops in Nebraska. University of Nebraska-Lincoln Extension. EC06-155.

  • Focazio M. J., Reilly T. E., Rupert M. G., & Helsel D. R. (2002). Assessing ground-water vulnerability to contamination: Providing scientifically defensible information for decision makers. U.S. Geological Survey Circular 1224, online Retrieved on April 23, 2009, from http://pubs.usgs.gov/circ/2002/circ1224/.

  • Foster S. S. D. (1987). Fundamental concepts in aquifer vulnerability, pollution risk and protection strategy, in W. van Duijvanbooden and H.G. van Waegeningh (eds.), Vulnerability of Soil and Groundwater to Pollution, Proceedings and Information No. 38 of the International Conference (pp. 69–86). Netherlands: TNO Committee on Hydrological Research.

  • Frenzel S. A., Swanson R. B., Huntzinger T. L., Stamer J. K., Emmons P. J., et al. (1998). Water quality in the Central Nebraska Basins, Nebraska, 1992–95: U.S. Geological Survey Circular 1163, online Retrieved on May 29, 2010, online retrieved from http://pubs.usgs.gov/circ/circ1163/circ1163.pdf.

  • Gogu, R. C., & Dassargues, A. (2000). Current trends and future challenges in groundwater vulnerability assessment using overlay and index methods. Environmental Geology, 39(6), 549–559. doi:10.1007/s002540050466.

    Article  CAS  Google Scholar 

  • Goldscheider, N. (2003). Karst groundwater vulnerability mapping: application of a new method in the Swabian Alb, Germany. Hydrogeology Journal, 13(4), 555–564. doi:10.1007/s10040-003-0291-3.

    Article  Google Scholar 

  • Guo, Q., Wang, Y., Gao, X., & Ma, T. (2006). A new model (DRARCH) for assessing groundwater vulnerability to arsenic contamination at basin scale: a case study in Taiyuan basin, northern China. Environmental Geology, 52(5), 923–932. doi:10.1007/s00254-006-0534-4.

    Article  Google Scholar 

  • Gurdak J. J., & Qi S. L. (2006). Vulnerability of recently recharged ground water in the High Plains Aquifer to nitrate contamination. USGS Scientific Investigations Report 2006–5050, pp. 39.

  • Helsel D. R., & Hirsch R. M. (2002). Statistical methods in water resources. Techniques of Water Resources Investigations, Book 4, chapter A3. U.S. Geological Survey, pp. 522.

  • Hill, A. R. (1996). Nitrate Removal in Stream Riparian Zones. Journal of Environmental Quality, 25(4), 743. doi:10.2134/jeq1996.00472425002500040014x.

    Article  CAS  Google Scholar 

  • Huntzinger, T. L., & Ellis, M. J. (1993). Central Nebraska river basins, Nebraska. Water Resources Bulletin, 29(4), 533–574.

    Article  Google Scholar 

  • Ige, D. V., Akinremi, O. O., & Flaten, D. N. (2007). Direct and Indirect Effects of Soil Properties on Phosphorus Retention Capacity. Soil Science Society of America Journal, 71(1), 95. doi:10.2136/sssaj2005.0324.

    Article  CAS  Google Scholar 

  • Klocke, N., Watts, D. G., Schneekloth, J., Davison, D. R., Todd, R., & Parkhurst, A. M. (1999). Nitrate leaching in irrigated corn and soybean in a semi-arid climate. Transactions of the ASABE, 42(6), 1621–1630.

    Article  CAS  Google Scholar 

  • Knobeloch, L., Salna, B., Hogan, A., Postle, J., & Anderson, H. (2000). Blue babies and nitrate-contaminated well water. Environmental Health Perspectives, 108(7), 675–678.

    Article  CAS  Google Scholar 

  • Lackey, S. O., & Chen, X. (2010). Streambed hydrology tests in the Lower Elkhorn River and its tributaries. Nebraska: Conservation and Survey Division, University of Nebraska-Lincoln. 50 p.

    Google Scholar 

  • Li, R., & Merchant, J. W. (2013). Modeling vulnerability of groundwater to pollution under future scenarios of climate change and biofuels-related land use change: A case study in North Dakota, USA. Science of the Total Environment, 447, 32–45. doi:10.1016/j.scitotenv.2013.01.011.

    Article  CAS  Google Scholar 

  • Masetti, M., Poli, S., & Sterlacchini, S. (2007). The Use of the Weights-of-Evidence Modeling Technique to Estimate the Vulnerability of Groundwater to Nitrate Contamination. Natural Resources Research, 16(2), 109–119. doi:10.1007/s11053-007-9045-6.

    Article  CAS  Google Scholar 

  • Merchant, J. W. (1994). GIS-based groundwater pollution hazard assessment: a critical review of the DRASTIC model. Photogrammetric Engineering and Remote Sensing, 60(9), 1117–1128.

    Google Scholar 

  • Merchant, J., & Dappen, P. (2013). Remote Sensing Enables Modeling of Groundwater Pollution Risk. In Environmental Change: Meeting the Challenges with Remote Sensing Imagery (R. Dodge and R. Congalton, eds.) (pp. 54–57). Alexandria, VA: American Geosciences Institute.

  • National Research Council. (1993). Groundwater vulnerability assessment: Contamination potential under conditions of uncertainties. Washington, D.C., 158pp.

  • National Research Council. (2000). Investigating groundwater systems on regional and national scales. Washington: National Academy Press. 158 pp.

    Google Scholar 

  • Nebraska Department of Environmental Quality (NDEQ). (2009). 2009 Nebraska groundwater quality monitoring report (p. 48). Nebraska: Lincoln.

    Google Scholar 

  • Nebraska Department of Natural Resources (NDNR). (2009). Report summary, 2010 annual evaluation of availability of hydrologically connected water supplies, pp. 24. Retrieved on May 29, 2013, from http://www.dnr.state.ne.us/IWM/docs/IWM_AnnualReports.html.

  • Nebraska Natural Resources Commission. (1986). Policy issue study on integrated management of surface water and groundwater, state water planning and review process: integrated management of surface water and groundwater report : a report of the Director of Natural Resources to Governor Robert Kerrey and the members of the Nebraska Legislature: State Water Planning and Review Process, pp 139.

  • Neukum, C., Hötzl, H., & Himmelsbach, T. (2007). Validation of vulnerability mapping methods by field investigations and numerical modelling. Hydrogeology Journal, 16(4), 641–658. doi:10.1007/s10040-007-0249-y.

    Article  Google Scholar 

  • Nolan, B. T., Hitt, K. J., & Ruddy, B. C. (2002). Probability of Nitrate Contamination of Recently Recharged Groundwaters in the Conterminous United States. Environmental Science & Technology, 36(10), 2138–2145. doi:10.1021/es0113854.

    Article  CAS  Google Scholar 

  • Panagopoulos, G. P., Antonakos, A. K., & Lambrakis, N. J. (2006). Optimization of the DRASTIC method for groundwater vulnerability assessment via the use of simple statistical methods and GIS. Hydrogeology Journal, 14(6), 894–911. doi:10.1007/s10040-005-0008-x.

    Article  CAS  Google Scholar 

  • Raines, G. L., Bonham-Carter, G. F., & Kemp, L. D. (2000). Predictive probabilistic modeling using ArcView GIS. ArcUser, 3(2), 45–48.

    Google Scholar 

  • Randall, G. W., Huggins, D. R., Russelle, M. P., Fuchs, D. J., Nelson, W. W., & Anderson, J. L. (1997). Nitrate Losses through Subsurface Tile Drainage in Conservation Reserve Program, Alfalfa, and Row Crop Systems. Journal of Environmental Quality, 26(5), 1240. doi:10.2134/jeq1997.00472425002600050007x.

    Article  CAS  Google Scholar 

  • Rundquist, D. C., Peters, A. J., Di, L., Rodekohr, D. A., Ehrman, R. L., & Murray, G. (1991). Statewide groundwater‐vulnerability assessment in nebraska using the drastic/GIS model. Geocarto International, 6(2), 51–58. doi:10.1080/10106049109354307.

    Article  Google Scholar 

  • Rupert, M. (1999). Improvements to the DRASTIC ground-water vulnerability mapping method. USGS Fact Sheet FS-066-99, Boise, Idaho. Online retrieved on June 1, 2013 at http://pubs.er.usgs.gov/publication/fs06699.

  • Sampat, P. (2000). Groundwater shock: The polluting of the world’s major freshwater stores. World Watch, 13(1), 10–22.

    Google Scholar 

  • Scanlon, B. R., Jolly, I., Sophocleous, M., & Zhang, L. (2007). Global impacts of conversions from natural to agricultural ecosystems on water resources: Quantity versus quality. Water Resources Research, 43. doi: 10.1029/2006WR005486.

  • Scibek, J., & Allen, D. M. (2006). Modeled impacts of predicted climate change on recharge and groundwater levels: Impacts of climate change on recharge. Water Resources Research, 42(11). doi:10.1029/2005WR004742.

  • Sener, E., & Davraz, A. (2012). Assessment of groundwater vulnerability based on a modified DRASTIC model, GIS and an analytic hierarchy process (AHP) method: the case of Egirdir Lake basin (Isparta, Turkey). Hydrogeology Journal, 21(3), 701–714. doi:10.1007/s10040-012-0947-y.

    Article  Google Scholar 

  • Shirazi, S. M., Imran, H. M., & Akib, S. (2012). GIS-based DRASTIC method for groundwater vulnerability assessment: a review. Journal of Risk Research, 15(8), 991–1011. doi:10.1080/13669877.2012.686053.

    Article  Google Scholar 

  • Sinkevich, M. G., Walter, M. T., Lembo, A. J., Richards, B. K., Peranginangin, N., Aburime, S. A., & Steenhuis, T. S. (2005). A GIS-Based Ground Water Contamination Risk Assessment Tool for Pesticides. Ground Water Monitoring and Remediation, 25(4), 82–91. doi:10.1111/j.1745-6592.2005.00055.x.

    Article  CAS  Google Scholar 

  • Snyder, D. T. (2008). Estimated depth to ground water and configuration of the water table in the Portland, Oregon Area. U.S. Geological Survey Scientific Investigations Report 2008–5059, Online retrieved on June 1, 2013 from http://pubs.usgs.gov/sir/2008/5059/.

  • Stanton, J. (2010). Simulation of groundwater flow and effects of groundwater irrigation on stream base flow in the Elkhorn and Loup River Basins, Nebraska, 1895–2055—Phase Two: U.S. Geological Survey Scientific Investigations Report 2010–5149, 78 p. with app.

  • Steyaert, L. T., & Goodchild, M. F. (1994). Integrating geographic information systems and environmental simulation models: A status review. In W. K. Michener, J. W. Brunt, & S. G. Stafford (Eds.), Environmental Information Management and Analysis: Ecosystem to Global Scales (pp. 333–356). Bristol: Taylor & Francis.

    Google Scholar 

  • Tesoriero, A. J., & Voss, F. D. (1997). Predicting the Probability of Elevated Nitrate Concentrations in the Puget Sound Basin: Implications for Aquifer Susceptibility and Vulnerability. Ground Water, 35(6), 1029–1039. doi:10.1111/j.1745-6584.1997.tb00175.x.

    Article  CAS  Google Scholar 

  • Tiktak, A., Boesten, J. J. T. I., van der Linden, A. M. A., & Vanclooster, M. (2006). Mapping Ground Water Vulnerability to Pesticide Leaching with a Process-Based Metamodel of EuroPEARL. Journal of Environmental Quality, 35(4), 1213. doi:10.2134/jeq2005.0377.

    Article  CAS  Google Scholar 

  • Toews, M. W., & Allen, D. M. (2009). Evaluating different GCMs for predicting spatial recharge in an irrigated arid region. Journal of Hydrology, 374(3–4), 265–281. doi:10.1016/j.jhydrol.2009.06.022.

    Article  Google Scholar 

  • University of Nebraska-Lincoln. (2000). Quality-assessed agrichemical contaminant database for Nebraska ground water. A cooperative project of the Nebraska Departments of Agriculture, Environmental Quality, and Natural Resources and the University of Nebraska-Lincoln, http://dnrdata.dnr.ne.gov/clearinghouse/index.asp, updated May 1, 2008.

  • Van Stempvoort, D., Ewert, L., & Wassenaar, L. (1993). Aquifer vulnerability index: A GIS compatible method for groundwater vulnerability mapping. Canadian Water Resources Journal, 18(1), 25–37. doi:10.4296/cwrj1801025.

    Article  Google Scholar 

  • Zektser, I. S., Karimova, O. A., Bujuoli, J., & Bucci, M. (2004). Regional Estimation of Fresh Groundwater Vulnerability: Methodological Aspects and Practical Applications. Water Resources, 31(6), 595–600. doi:10.1023/B:WARE.0000046896.98274.07.

    Article  CAS  Google Scholar 

  • Zhu, Y., & Fox, R. H. (2003). Corn–Soybean Rotation Effects on Nitrate Leaching. Agronomy Journal, 95(4), 1028. doi:10.2134/agronj2003.1028.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruopu Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Merchant, J.W. & Chen, XH. A Geospatial Approach for Assessing Groundwater Vulnerability to Nitrate Contamination in Agricultural Settings. Water Air Soil Pollut 225, 2214 (2014). https://doi.org/10.1007/s11270-014-2214-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-2214-4

Keywords

Navigation