Skip to main content

Advertisement

Log in

Removal and Recovery of U(VI) from Low Concentration Radioactive Wastewater by Ethylenediamine-Modified Biomass of Aspergillus niger

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In order to develop an effective and economical method for removing U(VI) from the low concentration radioactive wastewater with the U(VI) concentration of less than 1 mg L−1, the biomass of Aspergillus niger was prepared and modified with ethylenediamine, and the biosorption of uranium from the low concentration radioactive wastewater by the unmodified and the modified biomasses was investigated in a batch system. The modified biomass exhibited the adsorption efficiency of 99.25 % for uranium under the optimum conditions that pH was 5.0, the contact time was 150 min, and the biosorbent dose was 0.2 g L−1. The adsorption fitted well to Langmuir isotherm, and the maximum sorption capacity of the modified biomass for U(VI) was determined to be 6.789 mg g−1 which increased by 36.45 % compared with the unmodified biomass. The adsorption kinetics was better depicted by pseudo-second-order kinetic model. The Gibbs free energy change (ΔG 0), enthalpy change (ΔH 0), and entropy change (ΔS 0) showed that the process of U(VI) adsorption was spontaneous, endothermic, and feasible. The changes in the groups, morphology, and the presence of U(VI) on the surface of the adsorbents which were characterized by FT-IR, SEM, and EDS, demonstrated that the U(VI) was successfully adsorbed onto the modified biomass. Moreover, the UO2 2+ absorbed on the modified biomass can be released by 0.1 mol L−1 HNO3 with high desorption efficiency of 99.21 %. The results show that the modified biomass can remove U(VI) from low concentration radioactive wastewater more effectively than the unmodified biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ahmed, S. H., Sheikh, E. M. E. I., & Morsy, A. M. A. (2014). Potentiality of uranium biosorption from nitric acid solutions using shrimp shells. Journal of Environmental Radioactivity, 134, 120–127.

    Article  CAS  Google Scholar 

  • Akhtar, K., Akhtar, M. W., & Khalid, A. M. (2007). Removal and recovery of uranium from aqueous solutions by Trichoderma harzianum. Water Research, 41(6), 1366–1378.

    Article  CAS  Google Scholar 

  • Anirudhan, T. S., Divya, L., & Suchithra, P. S. (2009). Kinetic and equilibrium characterization of uranium (VI) adsorption onto carboxylate-functionalized poly (hydroxyethylmethacrylate)-grafted lignocellulosics. Journal of Environmental Management, 90(1), 549–560.

    Article  CAS  Google Scholar 

  • Anirudhan, T. S., Jalajamony, S., & Sreekumari, S. S. (2012). Adsorption of heavy metal ions from aqueous solutions by amine and carboxylate functionalized bentonites. Applied Clay Science, 265, 67–71.

    Article  Google Scholar 

  • Aslani, M. A. A., Yusan, S., Yenil, N., & Kuzu, S. (2012). Sorption profile of uranium (VI) from aqueous medium onto 3-O-acetyl-(S)-1,2-O-trichloroethylidene-5,6,8-trideoxy-a-D-xylo-oct-5(E)-eno-1,4-furano-7-ulose (OASOTCETDOXDXOEEFU). Chemical Engineering Journal, 200, 391–398.

    Article  Google Scholar 

  • Aytas, S., Turkozu, D. A., & Gok, C. (2011). Biosorption of U(VI) by bi-functionalized low cost biocomposite adsorbent. Desalination, 280, 354–362.

    Article  CAS  Google Scholar 

  • Bai, J., Yao, H. J., Fan, F. L., Lin, M. S., Zhang, L. N., Ding, H. J., Lei, F. A., Wu, X. L., Li, X. F., Guo, J. S., & Qin, Z. (2010). Biosorption of uranium by chemically modified Rhodotorula glutinis. Journal of Environmental Radioactivity, 101(11), 969–973.

    Article  CAS  Google Scholar 

  • Bai, J., Wu, X. L., Fan, F. L., Tian, W., Yin, X. J., Zhao, L., Fan, F. Y., Li, Z., Tian, L. L., Qin, Z., & Guo, J. S. (2012). Biosorption of uranium by magnetically modified Rhodotorula glutinis. Enzyme and Microbial Technology, 51(6), 382–387.

    Article  CAS  Google Scholar 

  • Bai, J., Fan, F. L., Wu, X. L., Tian, W., Zhao, L., Yin, X. J., Fan, F. Y., Li, Z., Tian, L. L., Wang, Y., Qin, Z., & Guo, J. S. (2013). Equilibrium, kinetic and thermodynamic studies of uranium biosorption by calcium alginate beads. Journal of Environmental Radioactivity, 126, 226–231.

    Article  CAS  Google Scholar 

  • Bayramoğlu, G., Celik, G., & Arica, M. Y. (2006). Studies on accumulation of uranium by fungus Lentinus Sajor-caju. Journal of Hazardous Materials, 136(2), 345–353.

    Article  Google Scholar 

  • Bhat, S. V., Melo, J. S., Chaugule, B. B., & D’Souza, S. F. (2008). Biosorption characteristics of U(VI) from aqueous medium onto Catenella repens, a red alga. Journal of Hazardous Materials, 158(2), 628–635.

    Article  CAS  Google Scholar 

  • Chen, F., Tan, N., Long, W., & Yang, S. K. (2014a). Enhancement of U(VI) biosorption by chemically modified marine-derived mangrove endophytic fungus Fusarium sp. #ZZF51. Journal of Radioanalytical and Nuclear Chemistry, 299(1), 193–201.

    Article  CAS  Google Scholar 

  • Chen, F., Tan, N., Yan, X. M., Yang, S. K., She, Z. G., & Lin, Y. C. (2014b). Uranium(VI) removal from aqueous solution by Poly(amic acid)-modified marine fungus. Separation Science and Technology, 49, 1251–1258.

    Article  CAS  Google Scholar 

  • Cheng, Y. M., Sun, X., Liao, X. P., & Shi, B. (2011). Adsorptive recovery of uranium from nuclear fuel industrial wastewater by titanium loaded collagen fiber. Chinese Journal of Chemical Engineering, 19(4), 592–597.

    Article  CAS  Google Scholar 

  • Deng, S. B., & Ting, Y. P. (2005). Polyethylenimine-modified fungal biomass as a high-capacity biosorbent for Cr(VI) anions: sorption capacity and uptake mechanisms. Environmental Science & Technology, 39, 8490–8496.

    Article  CAS  Google Scholar 

  • Ding, D. X., Tan, X., Hu, N., Li, G. Y., Wang, Y. D., & Tan, Y. (2012). Removal and recovery of uranium (VI) from aqueous solutions by immobilized Aspergillus niger powder beads. Bioprocess and Biosystems Engineering, 35(9), 1567–1576.

    Article  Google Scholar 

  • Ding, D. X., Fu, P. K., Li, L., Xin, X., Hu, N., & Li, G. Y. (2014). U(VI) ion adsorption thermodynamics and kinetics from aqueous solution onto raw sodium feldspar and acid-activated sodium feldspar. Journal of Radioanalytical and Nuclear Chemistry, 299(3), 1903–1909.

    Article  CAS  Google Scholar 

  • Elsabawy, K. M., Sekkina, M. M. A., & Tawfik, A. T. (2011). Green synthesis of nano-v-biotite for removal of toxic heavy metals, Th (IV) and U (VI) from aqueous solutions. Journal of Science and Technology, 2(8), 686–696.

    Google Scholar 

  • Erkaya, I. A., Arica, M. Y., Akbulut, A., & Bayramoglu, G. (2014). Biosorption of uranium (VI) by free and entrapped Chlamydomonas reinhardtii: kinetic, equilibrium and thermodynamic studies. Journal of Radioanalytical and Nuclear Chemistry, 299(3), 1993–2003.

    Article  CAS  Google Scholar 

  • Genç, Ö., Yalçınkaya, Y., Büyüktuncel, E., Denizli, A., Arıca, M. Y., & Bektaş, S. (2003). Uranium recovery by immobilized and dried powdered biomass: characterization and comparison. International Journal of Mineral Processing, 68(1), 93–107.

    Article  Google Scholar 

  • Ghasemi, M., Keshtkar, A. R., Dabbagh, R., & Safdari, S. J. (2011). Biosorption of uranium (VI) from aqueous solutions by Ca-pretreated Cystoseiraindica alga: breakthrough curves studies and modeling. Journal of Hazardous Materials, 189(1), 141–149.

    Article  CAS  Google Scholar 

  • Gok, C., & Aytas, S. (2009). Biosorption of U(VI) from aqueous solution using calcium alginate beads. Journal of Hazardous Materials, 168(1), 369–375.

    Article  CAS  Google Scholar 

  • Guler, U. A., & Sarioglu, M. (2013). Single and binary biosorption of Cu(II), Ni(II) and methylene blue by raw and pretreated Spirogyra sp.: equilibrium and kinetic modeling. Journal of Environmental Chemical Engineering, 1(3), 369–377.

    Article  CAS  Google Scholar 

  • He, S., Ruan, B., Zheng, Y. P., Zhou, X. B., & Xu, X. P. (2014). Immobilization of chlorine dioxide modified cells for uranium absorption. Journal of Environmental Radioactivity, 137, 46–51.

    Article  CAS  Google Scholar 

  • Kapoor, A., & Viraraghavan, T. (1997). Heavy metal biosorption sites in Aspergillus niger. Bioresource Technology, 61, 221–227.

    Article  CAS  Google Scholar 

  • Khambhaty, Y. K., Mody, K., Basha, S., & Jha, B. (2009). Kinetics equilibrium and thermodynamic studies on biosorption of hexavalent chromium by dead fungal biomass of marine Aspergillus nigerniger. Chemical Engineering Journal, 145(3), 489–495.

    Article  CAS  Google Scholar 

  • Kiran, I., Akar, T., & Tunali, S. (2005). Biosorption of Pb(II) and Cu(II) from aqueous solutions by pretreated biomass of Neurosporacrassa. Process Biochemistry, 40(11), 3550–3558.

    Article  CAS  Google Scholar 

  • Kulkarni, R. M., Shetty, K. V., & Srinikethan, G. (2013). Cadmium (II) and nickel (II) biosorption by Bacillus laterosporus (MTCC 1628). Journal of the Taiwan Institute of Chemical Engineers, 45(4), 1628–1635.

    Article  Google Scholar 

  • Kushwaha, S., & Sudhakar, P. P. (2013). Sorption of uranium from aqueous solutions using palm-shell-based adsorbents: a kinetic and equilibrium study. Journal of Environmental Radioactivity, 126, 115–124.

    Article  CAS  Google Scholar 

  • Li, P. F., Mao, Z. Y., Rao, X. J., Wang, X. M., Min, M. Z., Qiu, L. W., & Liu, Z. L. (2004). Biosorption of uranium by lake-harvested biomass from a cyanobacterium bloom. Bioresource Technology, 94(2), 193–195.

    Article  CAS  Google Scholar 

  • Liu, Y. G., Liao, T., He, Z. B., Li, T. T., Wang, H., Hu, X. J., Guo, Y. M., & He, Y. (2013). Biosorption of copper (II) from aqueous solution by Bacillus subtilis cells immobilized into chitosan beads. Transactions of Nonferrous Metals Society of China, 23(6), 1804–1814.

    Article  CAS  Google Scholar 

  • Luo, F., Liu, Y. H., Li, X. M., Xuan, Z. X., & Ma, J. T. (2006). Biosorption of lead ion by chemically-modified biomass of marine brown algae Laminaria japonica. Chemosphere, 64(7), 1122–1127.

    Article  CAS  Google Scholar 

  • Mahmoud, M. A. (2013). Removal of Uranium (VI) from aqueous solution using low cost and eco-Friendly adsorbents. Chemical Engineering and Process Technology, 4(6), 169.

    Article  Google Scholar 

  • Moghaddam, M. R., Fatemi, S., & Keshtkar, A. (2013). Adsorption of lead (Pb2+) and uranium cations by brown algae; experimental and thermodynamic modeling. Chemical Engineering Journal, 231, 294–303.

    Article  CAS  Google Scholar 

  • Mwangi, I. W., & Ngila, J. C. (2012). Removal of heavy metals from contaminated water using ethylenediamine-modified green seaweed (Caulerpaserrulata). Physics and Chemistry of the Earth, Parts A/B/C, 50, 111–120.

    Article  Google Scholar 

  • Pillai, S. S., Mullassery, M. D., Fernandez, N. B., Girija, N., Geetha, P., & Koshy, M. (2013). Biosorption of Cr(VI) from aqueous solution by chemically modified potato starch: equilibrium and kinetic studies. Ecotoxicology and Environmental Safety, 92, 199–205.

    Article  CAS  Google Scholar 

  • Prodromou, M., & Pashalidis, I. (2013). Uranium adsorption by non-treated and chemically modified cactus fibres in aqueous solutions. Journal of Radioanalytical and Nuclear Chemistry, 298(3), 1587–1595.

    Article  CAS  Google Scholar 

  • Resmi, G., Thampi, S. G., & Chandrakaran, S. (2012). Removal of lead from wastewater by adsorption usingacid-activated clay. Environmental Technology, 33(3), 291–297.

    Article  CAS  Google Scholar 

  • Ronda, A., Martín-Lara, M. A., Calero, M., & Blázquez, G. (2013). Analysis of the kinetics of lead biosorption using native and chemically treated olive tree pruning. Ecological Engineering, 58, 278–285.

    Article  Google Scholar 

  • Saeed, A., Iqbal, M., & Akhtar, M. W. (2005). Removal and recovery of lead (II) from single and multimetal (Cd, Cu, Ni, Zn) solutions by crop milling waste (black gram husk). Journal of Hazardous Materials, 117(1), 65–73.

    Article  CAS  Google Scholar 

  • Saifuddin, N. M., & Dinara, S. (2012). Immobilization of Saccharomyces Cerevisiae onto cross-linked Chitosan coated with magnetic nanoparticles for adsorption of Uranium (VI) ions. Advances in Natural and Applied Science, 6(2), 249–267.

    CAS  Google Scholar 

  • Saleem, N., & Bhatti, H. N. (2011). Adsorptive removal and recovery of U(VI) by citrus waste biomass. Bioresources, 6(3), 2522–2538.

    CAS  Google Scholar 

  • Satpati, S. K., Pal, S., Roy, S. B., & Tewari, P. K. (2014). Removal of uranium(VI) from dilute aqueous solutions using novel sequestering sorbent poly-acryl hydroxamic acid. Journal of Environmental Chemical Engineering, 2(3), 1343–1351.

    Article  Google Scholar 

  • Şimşek, S., & Ulusoy, U. (2013). Adsorptive properties of sulfolignin-polyacrylamide graft copolymer for lead and uranium: effect of hydroxylamine-hydrochloride treatment. Reactive and Functional Polymers, 73(1), 73–82.

    Article  Google Scholar 

  • Tsekova, K., Todorova, D., Dencheva, V., & Ganeva, S. (2010). Biosorption of copper(II) and cadmium(II) from aqueous solutions by free and immobilized biomass of Aspergillus niger. Bioresource Technology, 101, 1727–1731.

    Article  CAS  Google Scholar 

  • Vijayaraghavan, K., & Yun, Y. S. (2008). Biosorption of CI Reactive Black 5 from aqueous solution using acid-treated biomass of brown seaweed Laminariasp. Dyes and Pigments, 76(3), 726–732.

    Article  CAS  Google Scholar 

  • Wang, J. S., Hu, X. J., Liu, Y. G., Xie, S. B., & Bao, Z. L. (2010). Biosorption of uranium(VI) by immobilized Aspergillus fumigatus beads. Journal of Environmental Radioactivity, 101(6), 504–508.

    Article  CAS  Google Scholar 

  • Wang, J. S., Bao, Z. L., Chen, S. G., & Yang, J. H. (2011). Removal of uranium from aqueous solution by chitosan and ferrous ions. Journal of Engineering for Gas Turbines and Power, 133(8), 1–3.

    Google Scholar 

  • Xie, S. B., Yang, J., Chen, C., Zhang, X. J., Wang, Q. L., & Zhang, C. (2008). Study on biosorption kinetics and thermodynamics of uranium by Citrobacter freudii. Journal of Environmental Radioactivity, 99(1), 126–133.

    Article  CAS  Google Scholar 

  • Xu, L. C., Zhang, G. F., Gao, J., Zhang, X. L., & Wei, G. Z. (2010). Recycling and reuse of wastewater from uranium mining and milling. Uranium Mining and Metallurgy, 29(2), 78–81.

    CAS  Google Scholar 

  • Yuvaraja, G., Krishnaiah, N., Subbaiah, M. V., & Krishnaiah, A. (2014). Biosorption Pb(II) from aqueous solution by Solanum melongena leaf powder as a low-cost biosorbent prepared from agricultural waste. Colloids and Surfaces B: Biointerfaces, 114, 75–81.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (91326106 and 114055081) and the Development Program for Science and Technology for National Defense (B3720132001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De Xin Ding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, D.X., Xin, X., Li, L. et al. Removal and Recovery of U(VI) from Low Concentration Radioactive Wastewater by Ethylenediamine-Modified Biomass of Aspergillus niger . Water Air Soil Pollut 225, 2206 (2014). https://doi.org/10.1007/s11270-014-2206-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-2206-4

Keywords

Navigation