Skip to main content
Log in

Speciation in Application Environments for Dissolved Carbon Dioxide Sensors

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Measurement of the concentration of dissolved carbon dioxide in ground and surface aqueous environments is needed for a wide variety of scientific and industrial applications. These environments can be fresh, saline, or transitional in nature and can be hydrochemically complex. A next generation of sensors, like fiber-optic sensors, offer real-time, direct, distributed sensing of dissolved carbon dioxide and are an improvement over current technology for many applications; however, these sensors may be susceptible to signal disturbance when deployed in hydrochemically complex, natural environments. This complexity can best be characterized using hydrochemical modeling techniques. The modeling software, phreeqc 2.18, was used to conduct a comprehensive review to gain perspective on published data of natural water samples. Freshwater, saltwater, and transitional environments were characterized in terms of the distribution of carbonate and non-carbonate species present. Saline, transitional, and deep freshwater environments had the broadest range of carbonate distribution and species that may cross-interfere with sensor response. These data should be used to build complex laboratory test solutions that mimic the natural environment for use in sensor development. In some cases, specially engineered membranes may be required to mitigate the potentially cross-interfering effect of these ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abu-Jaber, N.S., & Wafa, N.A. (1996). Hydrochemistry of aquifers in the southern Dead Sea area, southern Jordan. Hydrochemistry of aquifers in the southern Dead Sea area, southern Jordan. Environmental Geology, 28(4), 213–222.

    Article  CAS  Google Scholar 

  • Almeida, F., Guimaraes, J., Jardim, W. (2001). Measuring the CO2 flux at the air/water interface in lakes using flow injection analysis. Journal of Environmental Monitoring, 3(3), 317–321.

    Article  CAS  Google Scholar 

  • Appelo, C.A.J., & Postma, D. (2005). Geochemistry, groundwater and pollution, 2nd edn. Amsterdam.

  • Bäckström, M., Nilsson, U., Hȧkansson, K., Allard, B., Karlsson, S. (2003). Speciation of heavy metals in road runoff and roadside total deposition. Water, Air, and Soil Pollution, 147(1–4), 343–366.

    Article  Google Scholar 

  • Bao, B., Melo, L., Davies, B., Fadaei, H., Sinton, D., Wild, P. (2013). Detecting supercritical CO2 in brine at sequestration pressure with an optical fiber sensor. Environmental Science & Technology, 47(1), 306–313.

    Article  CAS  Google Scholar 

  • Benson, S.M., & Surles, T. (2006). Carbon capture and storage: an overview with emphasis on capture and storage in deep geological formations. In Proceedings of the IEEE.

  • Birkle, P., & Aragon, J. (2002). Evolution and origin of deep reservoir water at the Activo Luna oil field, Gulf of Mexico, Mexico. AAPG Bulletin, 3(3), 457–484.

    Google Scholar 

  • Bradshaw, A.L., Brewer, P.G., Shafer, D.K., Williams, R.T. (1981). Measurements of total carbon dioxide and alkalinity by potentiometric titration in the GEOSECS program. Earth and Planetary Science Letters, 55(1), 99–115.

    Article  CAS  Google Scholar 

  • Bruland, K., & Lohan, M. (2006). Controls of trace metals in seawater In Elderfield, H., Holland, H., T. K. K. (Eds.), The Oceans and Marine Geochemistry, (pp. 23-47). Elsevier.

  • Carol, E.S., & Kruse, E.E. (2012). Hydrochemical characterization of the water resources in the coastal environments of the outer Río de la Plata estuary, Argentina. Journal of South American Earth Sciences, 37, 113–121.

    Article  CAS  Google Scholar 

  • Centeno, T.A., & Fuertes, A.B. (2001). Carbon molecular sieve membranes derived from a phenolic resin supported on porous ceramic tubes. Separation and Purification Technology, 25(1), 379–384.

    Article  CAS  Google Scholar 

  • Cowell, D., & Ford, D. (1980). Hydrochemistry of a dolomite karst: the Bruce Peninsula of Ontario. Canadian Journal of Earth Sciences.

  • Dickson, A.G., Sabine, C.L., Christian, J.R. (2007). Guide to best practices for ocean CO 2 measurements: PICES Special Publication.

  • Doney, S.C., Fabry, V.J., Feely, R. a., Kleypas, J. a (2009). Ocean acidification: the other CO 2 problem. Annual Review of Marine Science, 1(1), 169–192.

    Article  Google Scholar 

  • Dotsika, E., Poutoukis, D., Michelot, J., Raco, B. (2009). Natural tracers for identifying the origin of the thermal fluids emerging along the Aegean Volcanic arc (Greece): Evidence of Arc-Type Magmatic Water (ATMW) participation. Journal of Volcanology and Geothermal Research, 179(1–2), 19–32.

    Article  CAS  Google Scholar 

  • Friedrichs, G., Bock, J., Temps, F., Fietzek, P., Körtzinger, A., Wallace, D.W. (2010). Toward continuous monitoring of seawater 13CO2/12CO2 isotope ratio and pCO 2: performance of cavity ringdown spectroscopy and gas matrix effects. Limnology Oceanography.: Methods, 8, 539–551.

    Article  CAS  Google Scholar 

  • Goyet, C., Walt, D.R., Brewer, P.G. (1992). Development of a fiber-optic sensor for measurement of pCO2 in sea water: design criteria and sea trials. Deep Sea Research Part A. Oceanographic Research Papers, 39(6), 1015–1026.

    Article  CAS  Google Scholar 

  • Hidalgo, M, & Cruz-Sanjulián, J. (2001). Groundwater composition, hydrochemical evolution and mass transfer in a regional detrital aquifer (Baza basin, southern Spain). Applied Geochemistry, 16, 745–758.

    Article  CAS  Google Scholar 

  • Kim, Y., Lee, K.-S., Koh, D.-C., Lee, D.-H., Lee, S.-G., Park, W.-B., et al. (2003). Hydrogeochemical and isotopic evidence of groundwater salinization in a coastal aquifer: a case study in Jeju volcanic island, Korea. Journal of Hydrology, 270(34), 282–294.

    Article  CAS  Google Scholar 

  • Liu, X., Byrne, R.H., Adornato, L., Yates, K.K., Kaltenbacher, E., Ding, X., et al. (2013). In situ spectrophotometric measurement of dissolved inorganic carbon in seawater. Environmental Science & Technology, 47(19), 11106–11114.

    Article  CAS  Google Scholar 

  • Lucklum, R., Henning, B., Hauptmann, P., Schierbaum, K.D., Vaihinger, S., Gopel, W. (1991). Quartz microbalance sensors for gas detection. Sensors and Actuators, 27, 705–710.

    Article  CAS  Google Scholar 

  • Lueker, T.J., Dickson, A.G., Keeling, C.D. (2000). Ocean pCO2 calculated from dissolved inorganic carbon, alkalinity, and equations for K1 and K2: validation based on laboratory measurements of CO 2 in gas and seawater at equilibrium. Marine Chemistry, 70(1–3), 105–119.

    Article  CAS  Google Scholar 

  • Mosello, R. (1984). Hydrochemistry of high altitude alpine lakes. Schweizerische Zeitschrift für Hydrologie, 46, 86–99.

    CAS  Google Scholar 

  • Orghici, R., Willer, U., Gierszewska, M., Waldvogel, S., Schade, W. (2008). Fiber-optic evanescent field sensor for detection of explosives and CO 2 dissolved in water. Applied Physics B, 90(2), 355–360.

    Article  CAS  Google Scholar 

  • Papatheodorou, G., Demopoulou, G., Lambrakis, N. (2006). A long-term study of temporal hydrochemical data in a shallow lake using multivariate statistical techniques. Ecological Modelling, 193(34), 759–776.

    Article  Google Scholar 

  • Parkhurst, D.L., & Appelo, C. (1999). Users guide to PHREEQC (version 2): a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations.

  • Puckett, L., Cowdery, T., McMahon, P., Tornes, L., Stoner, J. (2002). Using chemical, hydrologic, and age dating analysis to delineate redox processes and flow paths in the riparian zone of a glacial outwash aquifer-stream system. Water Resources Research, 38(8), 9–29.

    Article  Google Scholar 

  • Reimer, A., Landmann, G., Kempe, S. (2008). Lake Van, Eastern Anatolia, Hydrochemistry and History. Aquatic Geochemistry, 15(1–2), 195–222.

    Google Scholar 

  • Schuster, U., Hannides, a., Mintrop, L., Körtzinger, A (2009). Sensors and instruments for oceanic dissolved carbon measurements. Ocean Science Discussions, 6(1), 491–524.

    Article  Google Scholar 

  • Siegert, M.J., Tranter, M., Ellis-Evans, J.C., Priscu, J.C., Berry Lyons, W. (2003). The hydrochemistry of lake vostok and the potential for life in antarctic subglacial lakes. Hydrological processes, 17(4), 795–814.

    Article  Google Scholar 

  • Smart, R., Soulsby, C., Neal, C., Wade, A., Cresser, M., Billett, M., et al. (1998). Factors regulating the spatial and temporal distribution of solute concentrations in a major river system in NE Scotland. The Science of The Total Environment, 221(2–3), 93–110.

    Article  CAS  Google Scholar 

  • Striegl, R.G., Kortelainen, P., Chanton, J.P., Wickland, K.P., Bugna, G.C., Rantakari, M. (2001). Carbon dioxide partial pressure and 13C content of North Temperate and Boreal Lakes at Spring Ice Melt. Limnology and Oceanography, 46(4), 941–945.

    Article  CAS  Google Scholar 

  • Stumm, W., & Morgan, J. (1996). Aquatic chemistry; chemical equilibria and rates in natural waters, 3rd. New York: Wiley Interscience.

    Google Scholar 

  • Takahashi, T., Weiss, R.F., Culberson, C., Edmond, J., Hammond, D., Wong, C., et al. (1970). The alkalinity and total carbon dioxide concentration in the world oceans. Journal of Geophysical Research, 75, 7648–7666.

    Article  Google Scholar 

  • Takahashi, T., Broecker, W., Bainbridge, A. (1981). The alkalinity and total carbon dioxide concentration in the world oceans. Carbon Cycle Modelling, SCOPE, 16(3078), 271–286.

    CAS  Google Scholar 

  • Themann, S., Schmidt, H.M., Esser, D. (2009). SPE-129127-MS measurement, monitoring, and verification of CO 2 storage: An integrated approach. In Proceedings of SPE International Conference on CO2 Capture, Storage, and Utilization. San Diego: Society of Petroleum Engineers.

  • Wium-Andersen, S., & Andersen, J.M. (1971). Carbon dioxide content of the interstitial water in the sediment of Grane Langso, a Danish Lobelia lake. American Society of Limnology and Oceanography, 17(6), 943–947.

    Article  Google Scholar 

  • Wolfbeis, O.S. (2000). Fiber-optic chemical sensors and biosensors. Analytical Chemistry, 72, 81–89.

    Article  CAS  Google Scholar 

  • Wolf-Gladrow, D., Zeebe, R., Klaas, C., Körtzinger, A., Dickson, A.G. (2007). Total alkalinity: the explicit conservative expression and its application to biogeochemical processes. Marine Chemistry, 106(1–2), 287–300.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Carbon Management Canada, the National Science and Engineering Council, Drs. Peter Wild, David Sinton, Don Lawton, Martin Jun, Ernie Perkins, Bernhard Mayer, Shannon Sterling and Geoff Burton, Luis Melo, Ben Davies, and Bo Bao.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonja Bhatia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 24 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatia, S., Risk, D. Speciation in Application Environments for Dissolved Carbon Dioxide Sensors. Water Air Soil Pollut 226, 154 (2015). https://doi.org/10.1007/s11270-014-2200-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-2200-x

Keywords

Navigation