Skip to main content
Log in

Carboplatin-Degradation Products Formed Under Deliberated and Non-deliberated Laboratory Experiments: Structural Elucidation

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Carboplatin (CPT) is of undisputed relevance to cancer therapy. The formation of CPT degradation products (DPs) was studied in various aqueous solutions containing 100 μg/mL CPT. Three phosphate buffer solutions, at pH 4, pH 6, and pH 8, and three other solutions with the addition of NaCl, ammonia, and humic acids, were examined in deliberated and non-deliberated laboratory experiments. Nine CPT DPs were identified by their MS and UV spectra. Six (CPT1, 5, 6, 7, 8 and 9) were produced following exposure to solar irradiation, and mainly obtained from (CPT4) in the presence of the appropriate nucleophiles. Calculation of the first-order kinetics processes of CPT degradation enabled understanding the reaction mechanism for CPT4 formation through the intermediate product [CPT–NH3]+. The detection and quantification of DPs of other investigated drugs is recommended as an integral part of any study, method, or technique dealing with pharmaceutical residues in aquatic environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barefoot, R. R. (2001). Speciation of platinum compounds: a review of recent applications in studies of platinum anticancer drugs—a review. Journal of Chromatography B, 751, 205–211.

    Article  CAS  Google Scholar 

  • Canovese, L., Cattalini, L., Chessa, G., & Tobe, M.L. (1988). Kinetics of the displacement of Cyclobutane-1,I -dicarboxylate from Diammine(cyc1obutane-1,1-dicarboxylato)platinum(11) in aqueous solution. Journal of the Chemical Society, Dalton Transactions, 2135–2140.

  • Ciancetta, A., Coletti, C., Marrone, A., & Re, N. (2011). Activation of carboplatin by chloride ions: a theoretical investigation. Theoretical Chemistry Accounts, 129, 757–769.

    Article  CAS  Google Scholar 

  • Ciancetta, A., Coletti, C., Marrone, A., & Re, N. (2012). Activation of carboplatin by carbonate: a theoretical investigation. Dalton Transactions, 41, 12960–12969.

    Article  CAS  Google Scholar 

  • Desoize, B., & Madoulet, C. (2002). Particular aspects of platinum compounds used at present in cancer treatment. Critical Reviews in Oncology/Hematology, 42, 317–325.

    Article  Google Scholar 

  • Falter, R., & Wilken, R. D. (1999). Determination of carboplatinum and cisplatinum by interfacing HPLC with ICP-MS using ultrasonic nebulisation. Science of the Total Environment, 225, 167–176.

    Article  CAS  Google Scholar 

  • Forastiere, A. A. (1994). Overview of platinum chemotherapy in head and neck cancer. Oncology, 21, 20–27.

    CAS  Google Scholar 

  • Hann, S., Stefanka, Z., Lenz, K., & Stingeder, G. (2005). Novel separation method for highly sensitive speciation of cancerostatic platinum compounds by HPLC–ICP–MS. Analytical and Bioanalytical Chemistry, 381, 405–412.

    Article  CAS  Google Scholar 

  • Jinchao, Z., & Mengsu, Y. (2005). Platinum complexes as antitumor agents. China, Patent No. CN 1634947.

  • Johnson, A. C., Jurgens, M. D., Williams, R. J., Kummerer, K., Kortenkamp, A., & Sumpter, J. P. (2008). Do cytotoxic chemotherapy drugs discharged into rivers pose a risk to the environment and human health? An overview and UK case study. Journal of Hydrology, 348, 167–175.

    Article  CAS  Google Scholar 

  • Johnson, A. C., Oldenkamp, R., Dumont, E., & Sumpter, J. P. (2013). Predicting concentrations of the cytostatic drugs cyclophosphamide, carboplatin, 5-fluorouracil, and capecitabine throughout the sewage effluents and surface waters of Europe. Environmental Toxicology and Chemistry, 32(9), 1954–1961.

    Article  CAS  Google Scholar 

  • Kummerer, K. (2001). Drugs in the environment: emission of drugs, diagnostic aids and disinfectants into wastewater by hospitals in relation to other sources—a review. Chemosphere, 45, 957–969.

    Article  CAS  Google Scholar 

  • Kummerer, K., & Helmers, E. (1997). Hospital effluents as a source for platinum in the environment. Science of the Total Environment, 193, 179–184.

    Article  Google Scholar 

  • Kummerer, K., Helmers, E., Hubner, P., Mascart, G., Milandri, M., Reinthaler, F., & Zwakenberg, M. (1999). European hospitals as a source for platinum in the environment in comparison with other sources. Science of the Total Environment, 225, 155–165.

    Article  CAS  Google Scholar 

  • Lenz, K., Hann, S., Koellensperger, G., Stefanka, Z., Stingeder, G., Weissenbacher, N., Mahnik, S. N., & Fuerhacker, M. (2005). Presence of cancerostatic platinum compounds in hospital wastewater and possible elimination by adsorption to activated sludge. Science of the Total Environment, 345, 141–152.

    Article  CAS  Google Scholar 

  • Levenspiel, O. (1999). Chemical reaction engineering (3rd ed., pp. 53–55). USA: Wiley.

    Google Scholar 

  • Meeravali, N. N., Madhavi, K., Manjusha, R., & Kumar, S. J. (2014). Sequential extraction of platinum, cisplatin and carboplatin from environmental samples and pre-concentration/separation using vesicular coacervative extraction and determination by continuum source ETAAS. Talanta, 118, 37–44.

    Article  CAS  Google Scholar 

  • Negreira, N., Mastroianni, N., López de Alda, M., & Barceló, D. (2013). Multianalyte determination of 24 cytostatics and metabolites by liquid chromatography–electrospray–tandem mass spectrometry and study of their stability and optimum storage conditions in aqueous solution. Talanta, 116, 290–299.

    Article  CAS  Google Scholar 

  • Okamoto, Y., Tazumi, K., Sanada, Y., Tsugane, M., & Uejima, E. (2010). Light-induced deterioration test of carboplatin under clinical setting. Yakugaku Zasshi, 130, 1369–1374.

    Article  CAS  Google Scholar 

  • Osawa, T., Naito, T., Suzuki, N., Imai, K., & Nakanishi, A. (2011). Validated method using liquid chromatography-electrospray ionization tandem mass spectrometry for the determination of contamination of the exterior surface of vials containing platinum anticancer drugs. Talanta, 85, 1614–1620.

  • Pasqua, A. J. D., Goodisman, J., Kerwood, D. J., Toms, B. B., Dubowy, R. L., & Dabrowaik, J. C. (2006). Activation of carboplatin by carbonate. Chemical Research in Toxicology, 19, 139–149.

    Article  Google Scholar 

  • Pasqua, A. J. D., Goodisman, J., & Dabrowaik, J. C. (2012). Understanding how the platinum anticancer drug carboplatin works: from the bottle to the cell. Inorganica Chimica Acta, 389, 29–35.

    Article  Google Scholar 

  • Pavelka, M. J., Lucas, M. F. A., & Russo, N. (2007). On the hydrolysis mechanism of the second-generation anticancer drug carboplatin. Chemistry A European Journal, 13, 10108–10116.

    Article  CAS  Google Scholar 

  • Pujol, M., Part, J., Trillas, M., & Domenech, X. (1993). Stability of aqueous carboplatin solutions under illumination. Monatshefte für Chemie, 124, 1077–1081.

    Article  CAS  Google Scholar 

  • Pujol, M., Girona, V., Part, J., Mufioz, M., & De Bolos, J. (1997). Degradation pathway of carboplatin in aqueous solution. International Journal of Pharmaceutics, 146, 263–269.

    Article  CAS  Google Scholar 

  • Schnurr, B., & Gust, R. (2002). Investigation on decomposition of carboplatin in infusion solutions. Ι. Validation of HPLC conditions for the quantification of the decomposition and the 1,1-cyclobutanedicarboxylic acid release from carboplatin. Microchimica Acta, 140, 69–76.

    Article  CAS  Google Scholar 

  • Schnurr, B., Heinrich, H., & Gust, R. (2002). Investigation on decomposition of carboplatin in infusion solutions. ΙΙ. Effect of 1,1-cyclobutanedicarboxylic acid admixture. Microchimica Acta, 140, 141–148.

    Article  CAS  Google Scholar 

  • Torres, F., Girona, V., Puiol, M., Prat, J., & De Bolos, J. (1996). Stability of carboplatin in 5% glucose solution exposed to light. International Journal of Pharmaceutics , 129, 275–277.

    Article  CAS  Google Scholar 

  • Turner, A., & Mascorda, L. (2015). Particle–water interactions of platinum-based anticancer drugs in river water and estuarine water. Chemosphere, 119, 415–422.

    Article  CAS  Google Scholar 

  • Valiere, C., Arnaud, P., Caroff, E., Dauphin, J. F., Clement, G., & Brion, F. (1996). Stability and compatibility study of a carboplatin solution in syringes for continuous ambulatory infusion. International Journal of Pharmaceutics, 138, 125–128.

    Article  CAS  Google Scholar 

  • Vivekanandan, K., Swamy, M. G., Prasad, S., Maikap, G. C., Mukherjee, R., & Burman, A. C. (2006). Identification of degradation products from aqueous carboplatin injection samples by electrospray mass spectrometry. International Journal of Pharmaceutics, 313, 214–221.

    Article  CAS  Google Scholar 

  • Vyas, N., Turner, A., & Sewell, G. (2014). Platinum-based anticancer drugs in waste waters of a major UK hospital and predicted concentrations in recipient surface waters. Science of the Total Environment, 493, 324–329.

    Article  CAS  Google Scholar 

  • Wei-Ping, L., Yi-Kun, Y., Zhen-Huan, Q., & Hui-Zhou, X. (1994). Photochemical studies on aqueous carboplatin. Science in China (Serial B), 37, 799–806.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Israel Ministry of Science for their funding and Prof. Shmuel Carmeli, Prof. Y. Sasson, Mrs. Ilana Koren, Dr. Jacob Oren, and Prof. Michael Zviely for their valuable comments and contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dror Avisar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gozlan, I., Rotstein, A. & Avisar, D. Carboplatin-Degradation Products Formed Under Deliberated and Non-deliberated Laboratory Experiments: Structural Elucidation. Water Air Soil Pollut 225, 2196 (2014). https://doi.org/10.1007/s11270-014-2196-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-2196-2

Keywords

Navigation