Water, Air, & Soil Pollution

, 226:21 | Cite as

The Effects of Glyphosate and Atrazine Mixture on Soil Microbial Population and Subsequent Impacts on Their Fate in a Tropical Soil

  • Eloana Janice BonfleurEmail author
  • Valdemar Luiz Tornisielo
  • Jussara Borges Regitano
  • Arquimedes Lavorenti


Glyphosate applied in association with atrazine provides the best cost/benefit for weed control for genetically modified corn. Therefore, the aim of this work was to evaluate the effects of applying glyphosate in mixture with atrazine on soil microbial population and on herbicides fate in a representative Oxisol from Brazil. The treatments consisted in applying the recommended field rate of glyphosate in association with 0, 1, and 2 times the recommended field rate of atrazine (and vice versa), plus the control (without herbicides application). The presence of atrazine temporarily (21 days) decreased soil microbial biomass (SMB) and increased soil carbon mineralization (SCmin, up to 13 times) and microbial metabolic quotient (qCO2) due to the stresses caused by its toxicity. When the mixture was applied independent of the rates, SMB was recovered and the amounts of extractable and non-extractable 14C-residues were the same for both herbicides at 63 days. These results suggest that glyphosate may mitigate atrazine’s temporary impact on soil microbes by supplying them nutrients during their adaptation.


Herbicides association Soil microbial population Environmental impact Pesticide mineralization 



The authors thank the College of Agriculture “Luiz de Queiroz” (ESALQ/USP), the Center of Nuclear Energy in Agriculture (CENA/USP), and the Brazilian Agricultural Research Corporation (CNPGC/EMBRAPA) for providing the facilities to develop the study and to the National Council for Higher Education Improvement (CAPES) for the financial support.


  1. Alef, K., & Nannipieri, P. (1995). Methods in applied soil microbiology and biochemistry. London: Academic Press Ltd.Google Scholar
  2. Araujo, A. S. F., Monteiro, R. T. R., & Abarkeli, R. B. (2003). Effect of glyphosate on the microbial activity of two Brazilian soils. Chemosphere. doi: 10.1016/S0045-6535(03)00266-2.Google Scholar
  3. Baéz, M. E., Fuentes, E., & Espinoza, J. (2013). Characterization of the atrazine sorption process on andisol and ultisol volcanic ash-derived soils: kinetic parameters and the contribution of humic fractions. Journal of Agricultural and Food Chemistry. doi: 10.1021/jf400950d.Google Scholar
  4. Barros, Y. J., Melo, V. F., Dionísio, J. A., de Oliveira, E. B., Caron, L., Kummer, L., de Azevedo, J. C. R., & Souza, L. C. P. (2010). Indicadores de qualidade de solos em área de mineração e metalurgia de chumbo. I Microrganismos. Revista Brasileira de Ciência do Solo. doi: 10.1590/S0100-06832010000400036.Google Scholar
  5. Bonfleur, E. J., Lavorenti, A., & Tornisielo, V. L. (2011). Mineralization and degradation of glyphosate and atrazine applied in combination in a Brazilian oxisol. Journal of Environmental Science and Health. Part B: Pesticides, Food Contaminants, and Agricultural Wastes. doi: 10.1080/03601234.2011.534384.Google Scholar
  6. Busse, M. D., Ratcliff, A. W., Shestak, C. J., & Powers, R. F. (2001). Glyphosate toxicity and the effects of long-term vegetation control on soil microbial communities. Soil Biology and Biochemistry. doi: 10.1016/S0038-0717(01)00103-1.Google Scholar
  7. Camargo, O. A., Moniz, A. C., Jorge, J. A., & Valadares, J. M. A. S. (1986). Métodos de análise química, mineralógica e física de solos do instituto agronômico de Campinas. Campinas: Instituto Agronômico.Google Scholar
  8. Castro, J. V., Peralba, M. C. R., & Ayub, M. A. Z. (2007). Biodegradation of the herbicide glyphosate by filamentous fungi in platform shaker and batch bioreactor. Journal of Environmental Science and Health. Part B: Pesticides, Food Contaminants, and Agricultural Wastes. doi: 10.1080/03601230701623290.Google Scholar
  9. Cheyns, K., Mertens, J., Diels, J., Smolders, E., & Springael, D. (2010). Monod kinetics rather than a first-order degradation model explains atrazine fate in soil mini-columns: Implications for pesticide fate modelling. Environmental Pollution. doi: 10.1016/j.envpol.2009.12.041.Google Scholar
  10. Conab (2013). Acompanhamento de safra brasileira: grãos, décimo primeiro levantamento, agosto 2013. Companhia Nacional de Abastecimento. Accessed 03 Sept 2013.
  11. Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA). (1997). Manual de métodos de análise de solo. Rio de Janeiro: Centro Nacional de Pesquisa em Solos.Google Scholar
  12. Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA). (2013). Milho - Cultivares para 2012/2013. Acessed 03 Sept 2013.
  13. Fao. (2013). FAOSTAT. Accessed 02 Sept 2013.
  14. Frighetto, R. T. S. (2000). Análise da biomassa microbiana em carbono: Método de fumigação-extração. In R. T. S. Frighetto & P. J. Valarini (Eds.), Indicadores biológicos e bioquímicos da qualidade do solo (pp. 157–166). Jaguariúna: Embrapa.Google Scholar
  15. Ghani, G., Wardle, D. A., Rahman, A., & Lauren, D. R. (1996). Interactions between 14C-labelled atrazine and the soil microbial biomass in relation to herbicide degradation. Biology and Fertility of Soils. doi: 10.1007/BF00335988.Google Scholar
  16. Gomez, E., Ferreras, L., Lovotti, L., & Fernandez, E. (2009). Impact of glyphosate application on microbial biomass and metabolic activity in a vertic argiudoll from Argentina. European Journal of Soil Biology. doi: 10.1016/j.ejsobi.2008.10.001.Google Scholar
  17. Haney, R. L., Senseman, S. A., Hons, F. M., & Zuberer, D. A. (2000). Effect of glyphosate on soil microbial activity and biomass. Weed Science. doi: 10.1614/0043-1745(2000)048[0089:EOGOSM]2.0.CO;2.Google Scholar
  18. Haney, R. L., Senseman, S. A., Krutz, L. J., & Hons, F. M. (2002). Soil carbon and nitrogen mineralization as affected by atrazine and glyphosate. Biology and Fertility of Soils. doi: 10.1007/s00374-001-0437-1.Google Scholar
  19. Hart, M. R., & Brookes, P. C. (1996). Soil microbial biomass and mineralization of soil organic matter after 19 years of cumulative field applications of pesticides. Soil Biology and Biochemistry. doi: 10.1016/S0038-0717(96)00249-0.Google Scholar
  20. Hixson, A. C., Shi, W., Weber, J. B., Yelverton, F. H., & Rufty, T. W. (2009). Soil organic matter changes in turfgrass systems affect binding and biodegradation of simazine. Crop Science. doi: 10.2135/cropsci2008.09.0541.Google Scholar
  21. Ibama. (2010). Produtos agrotóxicos e afins comercializados em 2009 no Brasil: uma abordagem ambiental. Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis. Acessed 02 Sept 2013. ISBN 978-85-7300-6.
  22. Jenkinson, D. S., & Powlson, D. S. (1976). The effects of biocidal treatment on metabolism in soil. I. Fumigation with chloroform. Soil Biology and Biochemistry. doi: 10.1016/0038-0717(76)90001-8.Google Scholar
  23. Joly, P., Besse-Hoggan, P., Bonnemoy, F., Batisson, I., Bohatier, J., & Mallet, C. (2012). Impact of maize formulated herbicides mesotrione and S-Metolachlor, applied alone and in mixture, on soil microbial communities. International Scholarly Research Notices. doi: 10.5402/2012/329898.Google Scholar
  24. Kaufman, D., Kearney, P.C. (1970). Microbial degradation of s-triazine herbicides. doi:  10.1007/978-1-4615-8464-3_9.
  25. Krutz, L.J., Senseman, S.A., Haney, R.L. (2003). Effect of roundup ultra on atrazine degradation in soil. Biology and Fertility of Soils, doi: ND44515400.Google Scholar
  26. Krutz, L., Burke, I., Reddy, K., Zablotowicz, R., & Price, A. (2009). Enhanced atrazine degradation: evidence for reduced residual weed control and a method for identifying adapted soils and predicting herbicide persistence. Weed Science. doi: 10.1614/WS-09-010.1.Google Scholar
  27. Krzysko-Lupicka, T., & Sudol, T. (2008). Interactions between glyphosate and autochthonous soil fungi surviving in aqueous solution of glyphosate. Chemosphere. doi: 10.1016/j.chemosphere.2007.11.006.Google Scholar
  28. Lancaster, S. H., Hollister, E. B., Senseman, S. A., & Gentry, T. J. (2009). Effects of repeated glyphosate applications on soil microbial community composition and the mineralization of glyphosate. Pest Management Science. doi: 10.1002/ps.1831.Google Scholar
  29. Lane, M., Lorenz, N., Saxena, J., Ramsier, C., & Dicka, R. P. (2012). The effect of glyphosate on soil microbial activity, microbial community structure, and soil potassium. Pedobiologia. doi: 10.1016/j.pedobi.2012.08.001.Google Scholar
  30. Lesan, H. M., & Bhandari, A. (2004). Contact-time-dependent atrazine residue formation in surface soils. Water Research. doi: 10.1016/j.watres.2004.08.020.Google Scholar
  31. Liphadzi, K. B., Al-Khatib, K., Bensch, C. N., Stahlman, P. W., Dille, J. A., Todd, T., Rice, C. W., Horak, M. J., & Head, G. (2005). Soil microbial and nematode communities as affected by glyphosate and tillage practices in a glyphosate-resistant cropping system. Weed Science. doi: 10.1614/WS-04-129R1.Google Scholar
  32. Loureiro, I., Rodríguez-García, E., Escorial, C., García-Baudín, J. M., González-Andújar, J. L., & Chueca, M. C. (2010). Distribution and frequency of resistance to four herbicide modes of action in Lolium rigidum gaud. Accessions randomly collected in winter cereal fields in Spain. Crop Protection. doi: 10.1016/j.cropro.2010.07.005.Google Scholar
  33. Lupwayi, N. Z., & Blackshaw, R. E. (2012). Soil microbiology in glyphosate-resistant corn cropping systems. Agronomy Journal. doi: 10.2134/agronj2012.0054.Google Scholar
  34. Lupwayi, N. Z., Harker, K. N., Clayton, G. W., O’Donovan, J. T., & Blackshaw, R. E. (2009). Soil microbial response to herbicides applied to glyphosate-resistant canola. Agriculture, Ecosystems & Environment. doi: 10.1016/j.agee.2008.08.007.Google Scholar
  35. Mahía, J., Cabaneiro, A., Carballas, T., & Díaz-Raviña, M. (2008). Microbial biomass and C mineralization in agricultural soils as affect by atrazine addition. Biology and Fertility of Soils. doi: 10.1007/s00374-008-0318-y.Google Scholar
  36. Marumoto, T., Kai, H., Yoshida, T., & Harada, T. (1977). Drying effect of mineralizations of microbial cells and their cell walls in soil and contribution of microbial cell walls as a source of decomposable soil organic matter due to drying. Soil Science & Plant Nutrition. doi: 10.1080/00380768.1977.10433017.Google Scholar
  37. Moreno, J. L., Aliaga, A., Navarro, S., Hernández, T., & García, C. (2007). Effects of atrazine on microbial activity in semiarid soil. Applied Soil Ecology. doi: 10.1016/j.apsoil.2006.05.002.Google Scholar
  38. Nakagawa, L. E., & Andréa, M. M. (2000). Degradação e formação de resíduos não-extraíveis ou ligados do herbicida atrazina em solo. Pesquisa Agropecuária Brasileira. doi: 10.1590/S0100-204X2000000800002.Google Scholar
  39. Nandula, V. K. (2010). Glyphosate resistance in crops and weeds. New Jersey: Wiley.CrossRefGoogle Scholar
  40. Nature. (2013). GM CROPS: Promisse and reality. Accessed 04 Sept 2013. doi:  10.1038/497022a.
  41. Obojska, A., Lejczak, B., & Kubrak, M. (1999). Degradation of phosphonates by streptomycete isolates. Applied Microbiology and Biotechnology. doi: 10.1007/s002530051476.Google Scholar
  42. Pereira, J. L., Picanço, M. C., Silva, A. A., Santos, E. A., Tomé, H. V. V., & Olarte, J. B. (2008). Effects of glyphosate and endosulfan on soil microorganisms in soybean crop. Planta Daninha. doi: 10.1590/S0100-83582008000400014.Google Scholar
  43. Perez, A., & Kogan, M. (2002). Glyphosate-resistant lolium multiflorum in Chilean orchards. Weed Research. doi: 10.1046/j.1365-3180.2003.00311.x.Google Scholar
  44. Perucci, P., Dumontet, S., Bufo, S. A., Mazzatura, A., & Casucci, C. (2000). Effects of organic amendement and herbicide treatment on soil microbial biomass. Biology and Fertility of Soils. doi: 10.1007/s003740000207.Google Scholar
  45. Radivojević, L. J., Gašić, S., Šantrić, L. J., & Stanković-Kalezić, R. (2007). The impact of atrazine on several biochemical properties of chernozem soil. Journal of Serbian Chemical Society. doi: 10.2298/JSC0810951R. 951.Google Scholar
  46. Schnürer, Y., Persson, P., Nilsson, M., Nordgren, A., & Giesler, R. (2006). Effects of surface sorption on microbial degradation of glyphosate. Environmental Science & Technology, 40, 4145–4150. doi: 10.1021/es0523744.CrossRefGoogle Scholar
  47. Sniegowski, K., Mertens, J., Diels, J., Smolders, E., & Springael, D. (2009). Inverse modeling of pesticide degradation and pesticide-degrading population size dynamics in a bioremediation system: parameterizing the Monod model. Chemosphere. doi: 10.1016/j.chemosphere.2009.01.050.Google Scholar
  48. Sofo, A., Scopa, A., Dumontet, S., Mazzatura, A., & Pasquale, V. (2012). Toxic effects of four sulphonylureas herbicides on soil microbial biomass. Journal of Environmental Science and Health. Part B: Pesticides, Food Contaminants, and Agricultural Wastes. doi: 10.1080/03601234.2012.669205.Google Scholar
  49. Soltani, N., Van Eerd, L. L., Vyn, R. J., Shropshire, C., & Sikkema, P. H. (2010). Weed control, environmental impact and profitability with glyphosate tank mixes in glyphosate-tolerant corn. Canadian Journal of Plant Science. doi: 10.4141/CJPS09084.Google Scholar
  50. Stratton, G. W., & Stewart, K. E. (1990). Glyphosate effects on microbial biomass in a coniferous forest soil. Environmental Toxicology and Water Quality. doi: 10.1002/tox.2530070303.Google Scholar
  51. Swarcewicz, M. K., & Gregorczyk, A. (2012). The effects of pesticide mixtures on degradation of pendimethalin in soils. Environmental Monitoring and Assessment. doi: 10.1007/s10661-011-2172-x.Google Scholar
  52. Tejada, M. (2009). Evolution of soil biological properties after addition of glyphosate, diflufenican and glyphosate + diflufenican herbicides. Chemosphere. doi: 10.1016/j.chemosphere.2009.03.040.Google Scholar
  53. Tharp, B. E., & Kells, J. J. (2002). Residual herbicides used in combination with glyphosate and glufosinate in corn (Zea mays). Weed Technology. doi: 10.1614/0890-037X(2002)016[0274:RHUICW]2.0.CO;2.Google Scholar
  54. van Raij, B., Andrade, J. C., Cantarella, H., & Quaggio, J. A. (2001). Análise química para avaliação da fertilidade de solos tropicais. Campinas: Instituto Agronômico.Google Scholar
  55. Vance, E. D., Brookes, P. C., & Jenkinson, D. S. (1987). An extraction method for measuring soil microbial biomass. Soil Biology and Biochemistry. doi: 10.1016/0038-0717(87)90052-6.Google Scholar
  56. Voos, G., & Groffman, P. M. (1997). Relationship between microbial biomass and dissipation of 2,4-D and dicamba in soil. Biology and Fertility of Soils. doi: 10.1007/BF01420229.Google Scholar
  57. Wardle, D. A., & Parkinson, D. (1990). Effects of three herbicides on soil microbial biomass and activity. Plant and Soil. doi: 10.1007/BF02851906.Google Scholar
  58. Wardle, D. A., & Parkinson, D. (1991). Relative importance of the effects of 2,4-D, glyphosate and environmental variables on the soil microbial biomass. Plant and Soil. doi: 10.1007/BF00012038.Google Scholar
  59. Wu, X., Li, M., Long, Y., Liu, R., Yu, Y., & Fang, H. (2012). Adsorption, mobility and degradation of diphenamid in Chinese soils. KSCE Journal of Civil Engineering. doi: 10.1007/s12205-012-1393-z.Google Scholar
  60. Zabaloy, M. C., Gómez, E., Garlandc, J. L., & Gómez, M. A. (2012). Assessment of microbial community function and structure in soil microcosms exposed to glyphosate. Applied Soil Ecology. doi: 10.1016/j.apsoil.2011.12.004.Google Scholar
  61. Zablotowicz, R.M.; Krutz, L.J.; Weaver, M.A.; Accinelli, C.; Reddy, K.N. (2008) Glufosinate and ammonium sulfate inhibit atrazine degradation in adapted soils. Biology and Fertility of Soils. doi:  10.1007/s00374-008-0299-x.

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Eloana Janice Bonfleur
    • 1
    Email author
  • Valdemar Luiz Tornisielo
    • 2
  • Jussara Borges Regitano
    • 1
  • Arquimedes Lavorenti
    • 3
  1. 1.Luiz de Queiroz College of Agricuture (ESALQ), Soil Science DepartmentUniversity of São Paulo (USP)PiracicabaBrazil
  2. 2.Center of nuclear energy in agriculture (CENA), Ecotoxicology LaboratoryUniversity of São Paulo (USP)PiracicabaBrazil
  3. 3.Luiz de Queiroz College of Agricuture (ESALQ), Exact Science DepartmentUniversity of São Paulo (USP)PiracicabaBrazil

Personalised recommendations